
Reserving 

Loss Reserving Using Estimation Methods Designed for Error 
Reduction 
Gary G. Venter 1 a 

1 Actuarial Sciences, Columbia University 

Keywords: markov chain monte carlo estimation, loss reserving, shrinkage priors, tweedie distribution, lasso 

Variance 
Vol. 14, Issue 1, 2021 

Maximum likelihood estimation has been the workhorse of statistics for decades, but 
alternative methods, going under the name “regularization,” are proving to have lower 
predictive variance. Regularization shrinks fitted values toward the overall mean, much 
like credibility does. There is good software available for regularization, and in particular, 
packages for Bayesian regularization make it easy to fit more complex models. One 
example given is a combined additive-multiplicative reserve model. In addition, 
probability distributions not available in generalized linear models are tried for residuals. 
These can improve range estimates. By applying heteroscedasticity adjustments to 
standard distributions, the variance-mean relationship as well as skewness and similar 
properties are explored. Use of software packages is discussed, with sample coding and 
output. The focus is on methodology, so projection to fill out the triangle is not 
addressed, but this is usually straightforward. 

1. BACKGROUND 

Overparameterized models tend to be less accurate in their 
predictions than those with fewer parameters. For instance, 
the popular textbook by Burnham and Anderson states, 
“Overfitted models … have estimated (and actual) sampling 
variances that are needlessly large (the precision of the es-
timators is poor, relative to what could have been accom-
plished with a more parsimonious model)” (2002). Also see 
J. Frost (2015). Such discussions are framed in terms of fit-
ting the model to the sample versus to the population. Get-
ting the right balance between these two fits is the goal of a 
lot of statistical methodology. 

Fitting parameterized curves to row or column factors 
is one way to mitigate overfitting, but finding the right 
curves can be an issue. Often actuaries keep a parameter 
for every row and every column, in part because it is not 
clear how to eliminate them, even though many of them 
are not statistically significant. The methodology discussed 
in this paper—of shrinking fitted values toward the overall 
mean—addresses that issue by reducing the predictive vari-
ance. 

Credibility theory shrinks class estimates toward the 
mean using the average for the variance of individual 
classes over time and the variance of the class averages. The 
James-Stein estimator (described in Stein 1956) does so as 
well, but it uses model assumptions to quantify the aver-
age individual variance. Starting with Hoerl and Kennard 
(1970), statisticians have developed methods that shrink 

the estimated mean for each observed point toward the 
overall mean by using a shrinkage parameter, λ, which is 
selected based on how well the model works on predictions 
for holdout samples. Typically λ is tested by dividing the 
data set into 4–10 groups, which are left out one at a time 
and predicted by the model fit on all the other groups, with 
various values of λ. This procedure is called “cross-valida-
tion.” 

The original regularization method is ridge regression, 
which uses parameters βj to minimize the negative log-
likelihood (NLL) plus λΣ . More popular recently is the 
least absolute shrinkage and selection operator, or LASSO, 
which minimizes NLL plus λΣ|βj|. This has the practical 
advantage that as λ increases, more and more parameters, 
and eventually all but the mean, go to exactly 0. This makes 
LASSO a method of variable selection as well as estimation, 
so the modeler can start with a large number of variables 
and the estimation will eliminate most of them. As λ gets 
smaller, the parameter size penalty vanishes, and thus the 
maximum likelihood estimate is obtained. Hoerl and Ken-
nard (1970) proved that some λ > 0 always produces a lower 
error variance, so shrinkage can always improve predictive 
accuracy. 

Usually all the variables are standardized by a linear 
transformation to make them mean 0, variance 1. That way 
parameter size is comparable across variables. The additive 
part of the variable transformations is picked up by the 
mean, which is not included in the penalty for the sum of 
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the parameters and so is not shrunk. The other parame-
ters end up being pushed toward zero, which in turn pushes 
each fitted value toward the mean. Blei (2015) and Hastie, 
Tibshirani, and Wainwright (2015) are good references. 

A straightforward application of regularization would be 
to apply it to generalized linear model (GLM) modeling in 
ratemaking. Such modeling is just like regular GLM except 
that shrinking the parameters shrinks the fitted values to-
ward the mean; thus, it is like GLM plus credibility, but 
with the shrinkage coming from the method instead of from 
within and between variances. Adding interaction terms 
would be convenient with shrinkage, as many of them 
would be shrunk to or toward zero unless they actually have 
predictive value. It would be easy to extend this method to 
distributions beyond those that GLM uses. Loss reserving, 
however, as discussed below, takes a little more doing to get 
into a regression form to which shrinkage can be applied. 

Bayesian versions of regularization work by giving the 
parameters shrinkage priors, which are mean-zero pri-
ors—normal distributions for ridge regression and double 
exponential for LASSO. There are generalizations that use 
other shrinkage priors. The advantages of the Bayesian form 
are that it gives a distribution of parameters for parameter 
uncertainty calculations and that it has a goodness-of-fit 
measure analogous to the Akaike information criterion 
(AIC) for model comparisons. AIC, the Bayesian informa-
tion criterion (BIC), and others do not work with regularized 
models due to parameter counting problems with shrink-
age. Markov chain Monte Carlo (MCMC) estimation can nu-
merically produce samples of the posterior distribution 
without needing to specify conjugate posteriors for the pri-
ors. 

A classical approach similar to Bayesian estimation is 
random effects modeling. Instead of parameters having dis-
tributions, the effects being modeled have shrinkage dis-
tributions, such as a mean-zero normal distribution. The 
terminology used is that this method projects effects in-
stead of estimating parameters. For instance, the differ-
ences between the frequency of an event in a territory and 
the statewide frequency of the same event could be a mean-
zero random effect. The only parameter would be the vari-
ance of these effects, but the model projects each territory’s 
effect. One common method of projection is to maximize 
the product of the likelihood function with the probability 
of the effects. This turns out to be the same thing as com-
puting the posterior mode in the Bayesian interpretation, 
but it can be done as a classical optimization. Ridge regres-
sion and LASSO are special cases of random-effects model-
ing. 

A typical assumption in random effects is that each ran-
dom effect has its own variance parameter. However, using 
the generalized degrees of freedom approach of Ye (1998), 
Venter, Gutkovich, and Gao (2017) found that having so 
many scale parameters can use up many degrees of free-
dom—that is, including them in the model makes the fitted 
values much more responsive to hypothetical small changes 
in the data points. Most random effects software allows 
users to specify the existence of just one variance parameter 
for the whole model, which seems to give a considerably 
more parsimonious model without sacrificing too much in 
goodness of fit. This procedure would get to the same result 

as ridge regression or LASSO. 
For reserve applications, the starting point is a row-col-

umn factor model. To make it applicable in this context, the 
fitted value is the row parameter times the column parame-
ter times a constant. For identifiability, there is no parame-
ter for the first row or column other than the constant—that 
is, the factor for that row and column is 1.0. The problem 
with applying parameter shrinkage in this form is that if any 
parameter is eliminated, that row or column also gets only 
the constant. However, if the model is set up so that each 
parameter is the change in the row or column factor from 
the previous one, then when a variable is eliminated, that 
row or column just gets the factor for the previous row or 
column. Since the first row and column get 1.0 anyway, the 
factor for the second row or column is its parameter change 
plus 1. 

This paper takes this activity one step further—instead 
of the parameters being these first differences, they are the 
second differences in the factors at each point. Then if one 
of these is 0, the modeled first difference does not change at 
that point, so the factor is on a line defined by the previous 
two factors. This seems to be a bit more realistic in actual 
triangles and allows for more parsimonious models. 

The row-column model is a special case of the row-col-
umn-diagonal model. The latter is actually in wide use in 
the social sciences, where it is called the age-period-cohort 
(APC) model. The history of these models traces back to 
Greenberg, Wright, and Sheps (1950), who in turn referred 
to data analysis by W. H. Frost (1939). In actuarial work, 
a column-diagonal model was discussed by Taylor (1977), 
who called it the “separation model,” a term still used. The 
first actuarial reference to the full APC model appears to be 
the reserve model of Barnett and Zehnwirth (2000). Mortal-
ity modelers have been using various forms of APC models 
since Renshaw and Haberman (2006). 

Parameter shrinkage methodology is starting to be ap-
plied in actuarial modeling. Venter, Gutkovich, and Gao 
(2017) modeled loss triangles with row, column, and diag-
onal parameters in slope change form fitted by random ef-
fects and LASSO. Venter and Şahın (2018) used Bayesian 
shrinkage priors for the same purpose in a mortality model 
that is similar to reserve models. 

Gao and Meng (2018) used shrinkage priors on cubic 
spline models of loss development. Some precursors in-
clude Barnett and Zehnwirth (2000), who applied shrinkage 
to reduce or omit piecewise linear slope changes in reserve 
modeling; Gluck (1997), who did something similar for the 
Cape Cod model; and England and Verrall (2002), who used 
cubic spline modeling for loss triangles. 

Section 2 discusses the row-column model for cell means 
and goes into more detail on applying parameter shrinkage. 
Section 3 discusses loss distributions for individual cells 
given their fitted means. The fitting methods and properties 
of the distributions are illustrated in Section 4 by fitting 
to frequency, severity, and aggregate loss data from a pub-
lished triangle. Extensions of the row-column model are 
discussed in Section 5. Section 6 concludes. Appendices 1, 
2, and 3 cover, respectively, distribution details, coding 
methods including examples and output, and the sensitivity 
of goodness of fit to the degree of shrinkage used. 
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2. PARAMETER SHRINKAGE METHODOLOGY 

The data are assumed to be for an incremental paid triangle. 
A constant term, C, is included, and the first row factor 
and first column factor are set to 1.0. In the basic row-col-
umn model, the mean (or a parameter closely related to the 
mean, depending on the distributional assumptions) for the 
(w,u) cell is the product of row and column factors: 

Here Aw is the parameter for accident year (AY) w and Bu is 
the parameter for lag u. This basic model will be used for 
frequency, severity, and aggregate losses by cell. 

There can get to be a lot of parameters, with one for 
every row and column. Parameter shrinkage aims at getting 
more parsimonious models that avoid overfitting and so 
predict better. This is the goal of regularization in general. 
Here there will still be a parameter for every row and every 
column, but several adjacent parameters could be on line 
segments. 

When all of the observations are positive, an exploratory 
fit can be done using regression with shrinkage on the logs 
of the losses. Then the fitted values are the sums of the row 
and column log parameters, plus a constant. This can be set 
up in regression format with (0,1) dummy variables identi-
fying the row and column an observation is in. This allows 
the use of commonly available estimation applications. The 
model in which the parameters are second differences can 
still be set up this way, but the variables become sums of 
more complicated dummies. This is illustrated in the exam-
ple. For the distributions in the examples, an exponential 
transformation of this model is done, with the dependent 
variable being the dollar losses. 

Some background on MCMC will help clarify the 
methodology. MCMC numerically generates a collection of 
samples from the posterior distribution when only the like-
lihood and prior are known. With data X and parameters β, 
Bayes’ theorem says the following: 

The left side is the posterior distribution of the parameters 
given the data, and the numerator of the right side is the 
likelihood times the prior. The denominator p(X) is a con-
stant for a given data set, so maximizing the numerator 
maximizes the posterior. In random effects, the numerator 
is called the “joint likelihood,” so maximizing it gives the 
posterior mode. The original MCMC methodology, that of 
the Metropolis sampler, uses just the numerator. It has a 
proposal generator to create a possible sample of the pa-
rameters from the latest accepted sample. If this increases 
the numerator, it is added to the collection of samples. If 
it doesn’t, there is an acceptance rule to put it in or not, 
based on a (0,1) random draw. After a warm-up period, the 
retained samples end up being representative of the poste-
rior. 

A refined version of the Metropolis sampler, the Me-
tropolis-Hastings sampler, is more efficient. Further refine-
ments include Hamiltonian mechanics and the no-U-turn 
sampler, which evolve the proposal generator dynamically. 
The latter is the basis of the Stan MCMC package, which 
is available in R and Python applications. Another method-

ology is the Gibbs sampler, which draws parameters se-
quentially from the posterior distribution of each parameter 
given the data and the latest sample of all the other pa-
rameters. The JAGS (Just Another Gibbs Sampler) package 
uses that method. 

Basically, then, MCMC is looking for parameters that 
give relatively high values to the log-likelihood plus the 
sum of the logs of the probabilities of the parameters, using 
their priors. The posterior mode is at the set of probabilities 
that maximizes this sum. (This is also called the “maximum 
a posterior,” or MAP.) The posterior mode using the normal 
or Laplace prior gives the parameters estimated by the ridge 
or LASSO regression. 

2.1. POSTERIOR MEAN VERSUS POSTERIOR MODE 

While classical shrinkage methods agree with the Bayesian 
posterior mode, the posterior mean is the basic Bayesian 
estimator. The mode is very similar to classical estimation 
in that both methods optimize some probability mea-
sure—such as the NLL or joint likelihood. 

The posterior mean is a fundamentally different ap-
proach. It does not maximize a probability. Instead it looks 
at all the parameter sets that could explain the data, and 
weights each according to its probability. The most likely 
set of parameters has appeal, but it has more risk of being 
a statistical fluke. If it is similar to many other possible pa-
rameter sets, then it would probably be only very slightly 
higher in posterior probability and not much different from 
the mean. But if it is very different, it could be overly tai-
lored to that specific data set. In that case, only a small per-
centage of the MCMC samples would be close to that point. 
The posterior mean is aimed at getting an estimate that 
would still perform well on other samples. 

2.2. MEASURING GOODNESS OF FIT 

Traditional goodness-of-fit measures, such as AIC, BIC, and 
so on, penalize the log-likelihood with parameter-count 
penalties. This is already problematic for nonlinear models, 
as the parameter count does not necessarily measure the 
same thing for them. Ye (1998) developed a way to count pa-
rameters using what he called “generalized degrees of free-
dom,” which measures how sensitive the fitted values are to 
slight changes in the corresponding data points. This is ac-
complished by taking the derivative of each fitted value with 
respect to the data point, usually numerically. It agrees with 
the standard parameter count given by the diagonal of the 
hat matrix for linear models. 

Parameter shrinkage also makes the parameter count 
ambiguous, and from Ye’s perspective, the shrunk parame-
ters do not allow as much responsiveness to changes in the 
data, so they do not use up as many degrees of freedom. For 
LASSO, the gold standard of model testing is leave-one-out, 
or LOO, estimation. The model is fitted over and over, each 
time leaving out a single observation, with the log-likeli-
hood computed for the omitted point. The sum of those log-
likelihoods is the LOO fit measure. 

Both LOO and Ye’s method are computationally expen-
sive and do not work well with MCMC anyway because of 
sampling uncertainty. To address these shortcomings, 
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Gelfand (1996) developed an approximation for a sample 
point’s out-of-sample log-likelihood using a numerical in-
tegration technique called “importance sampling.” In his 
implementation, that probability is estimated as its 
weighted average over all of the samples, using weights 
proportional to the reciprocal of the point’s likelihood un-
der each sample. That methodology gives greater weight to 
the samples that fit the point poorly, which would be more 
likely to occur if that point had been omitted. The estimate 
of the probability of the point comes out to be the recip-
rocal of the average over all samples of the reciprocal of 
the point’s probability in the sample. This is the harmonic 
mean of the point’s probabilities. With this calculation, the 
sample of the posterior distribution of all of the parameters 
as generated by MCMC is enough to do the LOO calculation. 

That technique gives good, but still volatile, estimates of 
the LOO log-likelihood. Vehtari, Gelman, and Gabry (2017) 
addressed that issue using something akin to extreme value 
theory—fitting a Pareto to the probability reciprocals and 
using the fitted Pareto values instead of the actuals for 
the largest 20% of the sample. They called this technique 
“Pareto-smoothed importance sampling.” It has been ex-
tensively tested and has become widely adopted. The penal-
ized likelihood measure is labeled loo, standing for “ex-
pected log pointwise predictive density.” It aims at doing 
what AIC and the other measures were trying to address as 
well—adjusting the log-likelihood for sample bias. 

The Stan software provides a LOO estimation package 
that can work on any posterior sample, even those not from 
Stan. It outputs loo as well as the implied log-likelihood 
penalty and something Stan calls LOOIC—the LOO infor-
mation criterion—which is ‑ loo, in accordance with 
standards of information theory. Since the factor is not crit-
ical, here the term “LOOIC” is used for loo, which is the 
NLL increased by the penalty. 

2.3. SELECTING THE DEGREE OF SHRINKAGE 

Selecting the scale parameter of the Laplace or Cauchy prior 
for MCMC, or the λ shrinkage parameter for LASSO or 
ridge regression, requires a balancing of parsimony and 
goodness of fit. Taking the parameter that optimizes loo 
is one way to proceed, and that was the approach taken by 
Venter and Şahın (2018). However, this approach is not to-
tally compatible with the posterior mean philosophy, as it is 
a combination of Bayesian and predictive optimization. An 
alternative would be to give a sufficiently wide prior to the 
scale parameter itself and include that in the MCMC esti-
mation. This is called a “fully Bayesian” method and pro-
duces a range of sample values of λ. Gao and Meng (2018) 
is a loss reserving paper using the fully Bayesian approach. 
That is the approach taken here. 

LASSO applications, such as the R package glmnet, use 
cross-validation to select a range of candidate λ values. An 
alternative is to build in more of the Bayesian approach. The 
Laplace (double exponential) prior is discussed in Appendix 
1. There, the log density is given as log[f(β|σ)] = ‑log(2) – 
log(σ) – |β|/σ, with σ = 1/λ. Summing over the k para-
meters makes the negative log probability = k * log(2) – k 
* log(λ) + λΣ|βj|. This is the LASSO penalty on the NLL 

of the data, but if λ is a given constant, the first two terms 
are dropped. In addition, if λ itself is given a uniform prior 
with density = C over some interval, the second term needs 
to be included, but the uniform density is a constant that 
can be dropped. Thus the quantity to be minimized over λ, 
βj is as follows: 

The uniform prior is an arbitrary but reasonable choice, so 
values of λ that are not at the exact minimum of this are 
possible candidates as well. 

2.4. ESTIMATION ISSUES 

Instead of doing MCMC, a nonlinear optimizer such as the 
Nelder-Mead method could be used to get the posterior 
mode through classical estimation. Good starting parame-
ters seem to be needed, however. One advantage of MCMC 
is that it seems to be able to find reasonable parameter sets 
better than classical optimization. That might in fact be one 
of its historical attractions. However, MCMC can also find a 
lot of local maximums that are not very good fits. The lingo 
of MCMC appears to be that this will happen if the model 
is “poorly specified.” In practice, that seems to mean if the 
priors are too wide. Running the estimation with starting 
values from the previous better fits also can help avoid bad 
local maximums. 

Starting with LASSO can give a starting point for MCMC. 
Stan is good at pointing out which parameters are not con-
tributing to the fit, but the second-difference variables are 
negatively correlated and thus work in groups, which makes 
some individual parameter ranges less indicative of the 
value of those parameters. LASSO gives parameter sets that 
work together at each value of λ. 

The Stan software used here is not able to include R 
packages such as tweedie and gamlss.dist. With good start-
ing parameters from related Stan fits, classical estimation 
in R can maximize the posterior mode for the Tweedie and 
Poisson–inverse Gaussian (PiG) distributions discussed in 
Appendix 1, and it can at least compare fits by the posterior 
mode probabilities. Some of that was done in the examples 
below. Unfortunately, neither the posterior mean nor the 
LOOIC can be computed this way, so the comparisons are 
essentially suggestive. 

3. DISTRIBUTIONS FOR RESERVE MODELING 

The LOOIC measure provides a way to compare the fits for 
different residual distributions. In addition, MCMC—and to 
some extent maximum likelihood—makes it easy to esti-
mate distributions that are not in the linear exponential 
family that GLM modeling requires. This feature allows bet-
ter modeling of the residual distributions and better es-
timation of reserve range distributions. The distributions 
explored here provide more flexible modeling of mean-vari-
ance relationships across the triangle as well as skewness 
and higher moments. 

Detailed distribution formulas are included in Appendix 
1, but there are a few key takeaways: 

• Development triangles are subject to a unique form 
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Details are also given for the shrinkage distributions 
used in MCMC, and generalizations of classical LASSO and 
ridge regression are discussed along with them. 

4. EXAMPLE 

As an example of this methodology, we model a loss tri-
angle, including exposures, counts, and amounts, from 
Wüthrich (2003). With the additive property of the Tweedie, 
only counts and amounts are needed to model the severity 
distributions across the cells, and with exposures, the fre-
quency distributions can also be modeled. The respective 
triangles are shown in Tables 1 and 2. 

4.1. EXPLORATORY ANALYSIS 

It is often useful before fitting models to do some simple fits 
on an exploratory basis. The row-column factor model ex-
presses the (w,u) cell mean as the product of row and col-
umn factors: 

The log additive form is often set up as a linear model, and 
before getting into the distributional issues, multiple re-
gression on the logs of the losses can reveal much of the 
structure of the data. This step can be done if there are no 
0 or negative data points, and in fact some conditional dis-
tributions for the data given the fitted means, such as the 
gamma, also require positive observations. 

4.1.1. DESIGN MATRIX 

To set up multiple regressions, the whole triangle has to 
be put into a single column as the dependent variable. In 
building the design matrix, it is also helpful to have three 
columns that identify the row, column, and diagonal, re-
spectively, that each data point comes from. 

The design matrix has a column for each variable. Here, 
for specificity, the first row and column are not given para-
meters, and therefore design matrix columns are needed for 
the variables in triangle rows 2–9 and columns 2–10. It usu-
ally helps to put in a name for each column and the triangle 
row or column number above each name. For a typical re-
gression or GLM model for a triangle, the variable for a row 
will be 1 for a cell if the cell is from that row, and 0 other-
wise, and similarly for the columns. 

The model favored here, where the variables are slope 
changes, can also be represented by a design matrix with 
dummy variables, but they are no longer (0,1) dummies. A 

of heteroskedasticity. The variance is not constant 
among the cells, but it often decreases less than the 
mean does across the triangle, due to volatile large 
losses paying later. This phenomenon is addressed 
by introducing an additional variance parameter. The 
easiest example is that of the normal distribu-
tion—instead of a constant variance, the variance, 
and so the standard deviation, is sµk. If k < 1, the 
variance decreases more slowly than the mean. Some-
thing similar can be done for any distribution and is 
labeled as the “k form.” The Weibull k is particularly 
interesting as its skewness changes more than is seen 
in other distributions, often in a helpful way. In GLM 
the mean-variance relationship also determines the 
skewness and other shape features, but now these can 
all be modeled independently. 

• The Tweedie distribution, usually parameterized with 
variance = φµp, p ≥ 1, is reparameterized in a, b, p to 
have mean = ab, variance = ab2, and skewness = pa‑1/2. 
Then the distribution of the sum of variables with the 
same b and p parameters is Tweedie in Σaj, b, p. Also, 
if Z is Tweedie in a, b, p, then cZ has parameters a, 
bc, p. This puts the focus on controlling the skewness 
with the p parameter. In the usual form, the skew-
ness is still p times the coefficient of variation (CV), 
but the skewness relationship is overshadowed by the 
variance. This additive feature makes it possible to fit 
a severity distribution even if only the number and to-
tal value of payments are known for each cell—the in-
dividual payments are not needed. This is the case for 
the normal k as well, but with a slightly different for-
mula. The reparameterization also makes it easier to 
represent mixtures of Poissons by a Tweedie, which 
generalizes the negative binomial and PiG. 

• Choosing which parameter of a distribution to fix 
among the cells can also change the mean-variance 
relationship across the triangle. For example, the 
gamma with mean µ = ab and variance ab2 has vari-
ance = bµ = µ2/a, so fixing a in all the cells makes the 
variance proportional to the mean squared, but fix-
ing b makes it proportional to the mean. This then 
works the same way with any Tweedie distribution, 
which allows either mean-variance relationship with 
any skewness/CV ratio, as determined by p. The form 
with variance proportional to mean often works fairly 
well, depending on how the larger loss payments are 
arranged. The Tweedie-mixed Poissons, such as the 
negative binomial, are related to this. They come in 
two forms with different mean-variance relation-
ships, which arise from the mixing Tweedie having 
a or b fixed across the cells. When fitted to a single 
population—that is, to only one cell—the fits from the 
two forms are identical. 

• The typical overdispersed Poisson (ODP) assumption 
has variance proportional to mean, but the actual 
ODP in the exponential family takes values only at in-
teger multiples of b, which is not what is needed for 
losses. Thus the ODP is usually applied to reserving 
with the quasi-likelihood specified but without any 
identified distribution function. The essential feature 
of this method is that the variance is proportional to 

the mean, so any Tweedie with fixed b, p could rep-
resent such an ODP, and in fact the gamma is often 
used in ODP simulations, where an actual distribution 
function is needed. But the gamma can be fitted di-
rectly by maximum likelihood estimation, which 
would allow the use of the Fisher information for pa-
rameter uncertainty instead of bootstrapping. (The 
parameters are asymptotically normal, but for posi-
tive parameters and usual sample sizes, a gamma with 
a normal copula usually works better for the parame-
ter distribution.) Here we fit this form of the gamma 
by regularization. 

Loss Reserving Using Estimation Methods Designed for Error Reduction

Variance 5



Table 1. Development triangle: Losses by AY and lag 

AY Lag: 0 1 2 3 4 5 6 7 8 9 

0 157.95 65.89 7.93 3.61 1.83 0.55 0.14 0.22 0.01 0.14 

1 176.86 60.31 8.53 1.41 0.63 0.34 0.49 1.01 0.38 0.23 

2 189.67 60.03 10.44 2.65 1.54 0.66 0.54 0.09 0.19 0 

3 189.15 57.71 7.77 3.03 1.43 0.95 0.27 0.61 0 0 

4 184.53 58.44 6.96 2.91 3.46 1.12 1.17 0 0 0 

5 185.62 56.59 5.73 2.45 1.05 0.93 0 0 0 0 

6 181.03 62.35 5.54 2.43 3.66 0 0 0 0 0 

7 179.96 55.36 5.99 2.74 0 0 0 0 0 0 

8 188.01 55.86 5.46 0 0 0 0 0 0 0 

Table 2. Payment counts by lag and exposures by AY 

AY Lag: 0 1 2 3 4 5 6 7 8 9 Exposures 

0 6,229 3,500 425 134 51 24 13 12 6 4 112.953 

1 6,395 3,342 402 108 31 14 12 5 6 5 110.364 

2 6,406 2,940 401 98 42 18 5 3 3 0 105.400 

3 6,148 2,898 301 92 41 23 12 10 0 0 102.067 

4 5,952 2,699 304 94 49 22 7 0 0 0 99.124 

5 5,924 2,692 300 91 32 23 0 0 0 0 101.460 

6 5,545 2,754 292 77 35 0 0 0 0 0 94.753 

7 5,520 2,459 267 81 0 0 0 0 0 0 92.326 

8 5,390 2,224 223 0 0 0 0 0 0 0 89.545 

Table 3. Full regression 

Multiple R 0.978 

R squared 0.956 

Adjusted R squared 0.940 

Standard error 0.592 

row parameter is the sum of its previous first differences, 
written as , and the first differences are sums 
of the previous second differences, so . Then p2 
= f2 = a2, p3 = f2 + f3 = 2a2 + a3, p4 = f2 + f3 + f4 = 3a2 + 2a3 
+ a4, and so on. Then the row parameter dummy ai is set 
to max(0, 1 + k − i) for a cell in row k. The same formula 
holds for column parameters, with slope changes denoted 
by bi. The entry for an observation in the design matrix is 
the number of times any slope change is added up for that 
observation. Table 6 shows the design matrix for the initial 
model. 

Regressions can be done on both matrices. Calling the 
log column y and the design matrix x, this is easy enough 
to do in Excel with matrix functions, giving the parameter 
vector β = (x’x)‑1x’y. It is even easier with regression func-
tions such as those available in the package Real Statistics. 

It and, in fact, all packages used here assume that the con-
stant term is not in the design matrix, so from now on, x 
refers to the design matrix without the constant term. 

4.1.2. REGRESSION 

Both the levels regression and the slope change regression 
give the same overall fit—see Table 3—but the t-statistics 
are different. Tables 4 and 5 show these for the two regres-
sions. Usually t-statistics with absolute values greater than 
2 are considered significant. By that measure, most of the 
row parameters in the levels regression are not significant, 
although those in the columns are. That might make this 
triangle a good candidate for the Cape Cod model. Parame-
ter reduction will end up allowing some degree of variability 
among the rows, much in the same way as the generalized 
Cape Cod of Gluck (1997). 
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The trend regression parameters are in general less sig-
nificant, but a lower threshold for t may be appropriate 
in that adjacent parameters are strongly negatively corre-
lated—raising one and lowering the next would offset each 
other in all but one row. Thus they are more significant to-
gether than they are individually. When a trend change is 
low, that means the previous trend continues. The a2 para-
meter is probably significant, which would show a general 
upward trend from the first row. The column trend changes 
are significant in the beginning, with some fluctuation in 
direction, and then lose significance, which would mean a 
continuing trend. 

4.1.3. LASSO 

For large design matrices of second-difference variables, 
Stan can have difficulty finding good initial parameter val-
ues. In those cases, LASSO is often more efficient at iden-
tifying variables that are likely to end up with parameters 
close to zero and thus with no change in slope for the fitted 
piecewise linear curve. These variables can then be elim-
inated, producing the same effect. Usually I like to use a 
low shrinkage value, λ, for this purpose, so that not too 
many variables are eliminated in LASSO. Generally some 
more can be eliminated later—those that Stan estimates to 
have posterior distributions centered near zero—as long as 
omitting them does not degrade the LOOIC. This isn’t vari-
able selection in the usual sense, as the variables eliminated 
would have parameter values of 0 if left in, so the whole 
design matrix is being used. It is more a matter of tidying 
up the model. The design matrix can feed right into LASSO 
software to get a start on parameter reduction. This step 
was not needed here since it is a pretty small triangle, but it 
is shown for possible use in other models. 

Appendix 2.1 shows code for the R package glmnet. The 
program estimates the parameters for up to 100 values of 
λ, depending on some internal settings. It can print a 
graph of the parameter values as a function of decreases in 
λ, also shown in Appendix 2. Cross-validation is done in a 
function called cv.glmnet, which produces a target range for 
λ between lambda.min and lambda.1se, for this example 
the range (0.0093,0.1257). Here the variables with nonzero 
parameters for values of λ near 0.03 were passed on to 
Bayesian LASSO. 

The range of λs is not passed on to Stan. I usually start 
Stan with a fairly wide prior for s = 1/λ, which is the Laplace 
scale parameter, but allowing s to be too high can lead to di-
vergent estimation. After seeing the posterior distribution I 
might tighten the prior to exclude ranges that aren’t being 
used for the sake of efficiency. This seems to have no effect 
on the posterior distribution of s. 

Bayesian LASSO has several advantages over classical, 
including giving a sample distribution of parameters for risk 
analysis, being able to include a distribution of values of λ, 
and having a goodness-of-fit measure, the LOOIC. The sec-
ond and third columns of coefficients shown in Appendix 2 
have the same nonzero variables, except for V10, V11, and 
V15. Keeping the variables in the second column except for 

Figure 1. Parameter ranges, Stan gamma fit v = 
(a2,a6,b2,b3,b4,b5,b7) 

V15 leaves the seven variables a2, a6, b2, b3, b4, b5 and b7, 
plus the constant. These are used in a reduced design ma-
trix in Stan to do the MCMC estimation. 

4.2. AGGREGATE TRIANGLE 

The models to be estimated by MCMC are coded in Stan. 
Appendix 2.2 shows the code used for estimating the 
gamma distribution with fixed b, so with variance propor-
tional to mean, from any design matrix x1. The model is as 
follows: 

The output includes a graph of (0.05,0.95) and (0.2,0.8) 
percentile ranges for the parameters, shown in Figure 1. 
This is where parameters that are near zero with large pos-
itive and negative ranges can be reviewed for removal from 
the model. None of our results are like that. The resulting 
row and column parameters are compared with those from 
the full lognormal regression (Tables 3 and 4) in Figure 
2. Not shown is the s parameter, which is in the range 
(0.32,0.77). 

Normal k, GiG, gamma, and Weibull k distributions were 
fitted to the triangle. All have very similar row and column 
parameters but different LOOICs, due to the different distri-
bution shapes. Table 7 shows the LOOIC, the NLL, and their 
difference, the parameter penalty. All except the gamma 
have a parameter for the power in the variance = s * meank 
relationship, but here all of those powers came out very 
close to 1.0. The gamma was fitted with the b parameter 
constant across the cells, so it also has the power k = 1 im-
plicitly. This procedure thus saves a parameter. The GiG has 
one more parameter for the percentage normal, which is 
30%. 

• c is uniform(‑4,16) 
• logbeta is uniform(‑20,20) 
• beta = exp(logbeta) 
• logs is uniform(‑5, ‑0.2) 
• s = exp(logs) 
• v is double exponential(0,s) 
• alpha = exp(x1 * v + c) * beta 
• y is gamma(alpha,beta), where in Stan, beta = 1/b 
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Table 4. Level parameters and t-statistics 

cn a2 a3 a4 a5 a6 a7 a8 a9 b2 b3 b4 b5 b6 b7 b8 b9 b10 

coef 4.80 0.45 0.39 0.47 0.74 0.33 0.51 0.36 0.31 -1.12 -3.26 -4.26 -4.71 -5.55 -6.10 -6.23 -7.50 -6.75 

s. err 0.28 0.26 0.28 0.29 0.30 0.32 0.34 0.37 0.41 0.28 0.28 0.29 0.30 0.32 0.34 0.37 0.41 0.48 

t-stat 17.4 1.71 1.41 1.64 2.46 1.03 1.52 0.97 0.75 -4.01 -11.7 -14.7 -15.5 -17.4 -17.9 -16.9 -18.2 -1.0 

Table 5. Trend change parameters and t-statistics 

cn a2 a3 a4 a5 a6 a7 a8 a9 b2 b3 b4 b5 b6 b7 b8 b9 b10 

coef 4.80 0.45 -0.52 0.15 0.19 -0.68 0.60 -0.34 0.11 -1.12 -1.01 1.13 0.56 -0.39 0.28 0.42 -1.13 2.01 

s. err 0.28 0.26 0.47 0.49 0.52 0.55 0.60 0.66 0.74 0.28 0.48 0.49 0.52 0.55 0.60 0.66 0.74 0.86 

t-stat 17.4 1.71 -1.11 0.30 0.36 -1.24 1.00 -0.52 0.14 -4.01 -2.10 2.30 1.08 -0.70 0.47 0.65 -1.54 2.33 
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Table 6. Regression variables 

Row Col a2 a3 a4 a5 a6 a7 a8 a9 b2 b3 b4 b5 b6 b7 b8 b9 b10 

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

1 3 0 0 0 0 0 0 0 0 2 1 0 0 0 0 0 0 0 

1 4 0 0 0 0 0 0 0 0 3 2 1 0 0 0 0 0 0 

1 5 0 0 0 0 0 0 0 0 4 3 2 1 0 0 0 0 0 

1 6 0 0 0 0 0 0 0 0 5 4 3 2 1 0 0 0 0 

1 7 0 0 0 0 0 0 0 0 6 5 4 3 2 1 0 0 0 

1 8 0 0 0 0 0 0 0 0 7 6 5 4 3 2 1 0 0 

1 9 0 0 0 0 0 0 0 0 8 7 6 5 4 3 2 1 0 

1 10 0 0 0 0 0 0 0 0 9 8 7 6 5 4 3 2 1 

2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 2 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

2 3 1 0 0 0 0 0 0 0 2 1 0 0 0 0 0 0 0 

2 4 1 0 0 0 0 0 0 0 3 2 1 0 0 0 0 0 0 

2 5 1 0 0 0 0 0 0 0 4 3 2 1 0 0 0 0 0 

2 6 1 0 0 0 0 0 0 0 5 4 3 2 1 0 0 0 0 

2 7 1 0 0 0 0 0 0 0 6 5 4 3 2 1 0 0 0 

2 8 1 0 0 0 0 0 0 0 7 6 5 4 3 2 1 0 0 

2 9 1 0 0 0 0 0 0 0 8 7 6 5 4 3 2 1 0 

2 10 1 0 0 0 0 0 0 0 9 8 7 6 5 4 3 2 1 

3 1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 2 2 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

3 3 2 1 0 0 0 0 0 0 2 1 0 0 0 0 0 0 0 

3 4 2 1 0 0 0 0 0 0 3 2 1 0 0 0 0 0 0 

3 5 2 1 0 0 0 0 0 0 4 3 2 1 0 0 0 0 0 

3 6 2 1 0 0 0 0 0 0 5 4 3 2 1 0 0 0 0 

3 7 2 1 0 0 0 0 0 0 6 5 4 3 2 1 0 0 0 

3 8 2 1 0 0 0 0 0 0 7 6 5 4 3 2 1 0 0 

3 9 2 1 0 0 0 0 0 0 8 7 6 5 4 3 2 1 0 
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Row Col a2 a3 a4 a5 a6 a7 a8 a9 b2 b3 b4 b5 b6 b7 b8 b9 b10 

4 1 3 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

4 2 3 2 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

4 3 3 2 1 0 0 0 0 0 2 1 0 0 0 0 0 0 0 

4 4 3 2 1 0 0 0 0 0 3 2 1 0 0 0 0 0 0 

4 5 3 2 1 0 0 0 0 0 4 3 2 1 0 0 0 0 0 

4 6 3 2 1 0 0 0 0 0 5 4 3 2 1 0 0 0 0 

4 7 3 2 1 0 0 0 0 0 6 5 4 3 2 1 0 0 0 

4 8 3 2 1 0 0 0 0 0 7 6 5 4 3 2 1 0 0 

5 1 4 3 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

5 2 4 3 2 1 0 0 0 0 1 0 0 0 0 0 0 0 0 

5 3 4 3 2 1 0 0 0 0 2 1 0 0 0 0 0 0 0 

5 4 4 3 2 1 0 0 0 0 3 2 1 0 0 0 0 0 0 

5 5 4 3 2 1 0 0 0 0 4 3 2 1 0 0 0 0 0 

5 6 4 3 2 1 0 0 0 0 5 4 3 2 1 0 0 0 0 

5 7 4 3 2 1 0 0 0 0 6 5 4 3 2 1 0 0 0 

6 1 5 4 3 2 1 0 0 0 0 0 0 0 0 0 0 0 0 

6 2 5 4 3 2 1 0 0 0 1 0 0 0 0 0 0 0 0 

6 3 5 4 3 2 1 0 0 0 2 1 0 0 0 0 0 0 0 

6 4 5 4 3 2 1 0 0 0 3 2 1 0 0 0 0 0 0 

6 5 5 4 3 2 1 0 0 0 4 3 2 1 0 0 0 0 0 

6 6 5 4 3 2 1 0 0 0 5 4 3 2 1 0 0 0 0 

7 1 6 5 4 3 2 1 0 0 0 0 0 0 0 0 0 0 0 

7 2 6 5 4 3 2 1 0 0 1 0 0 0 0 0 0 0 0 

7 3 6 5 4 3 2 1 0 0 2 1 0 0 0 0 0 0 0 

7 4 6 5 4 3 2 1 0 0 3 2 1 0 0 0 0 0 0 

7 5 6 5 4 3 2 1 0 0 4 3 2 1 0 0 0 0 0 

8 1 7 6 5 4 3 2 1 0 0 0 0 0 0 0 0 0 0 

8 2 7 6 5 4 3 2 1 0 1 0 0 0 0 0 0 0 0 

8 3 7 6 5 4 3 2 1 0 2 1 0 0 0 0 0 0 0 

8 4 7 6 5 4 3 2 1 0 3 2 1 0 0 0 0 0 0 
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Row Col a2 a3 a4 a5 a6 a7 a8 a9 b2 b3 b4 b5 b6 b7 b8 b9 b10 

9 1 8 7 6 5 4 3 2 1 0 0 0 0 0 0 0 0 0 

9 2 8 7 6 5 4 3 2 1 1 0 0 0 0 0 0 0 0 

9 3 8 7 6 5 4 3 2 1 2 1 0 0 0 0 0 0 0 
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Table 7. Aggregate triangle model fits 

Distribution LOOIC NLL Penalty 

Normal k 111.2 98.9 12.3 

GiG 106.2 94.7 11.5 

Gamma 103.6 93.8 9.8 

Weibull k 101.8 92.3 9.5 

The best-fitting distribution is the Weibull k, which is the 
Weibull with an adjustment fitted to the mean-variance re-
lationship. It has the most variability by cell in skewness, 
which apparently helps for this data set. The 0 skewness of 
the normal k does not work well for these data even though 
the variance is proportional to the mean. 

The Weibull k and gamma fits have about the same mean 
and CV by cell, but the skewnesses are different. Figure 3 
graphs the common CV and the two skewnesses by lag for 
the second row, the last row that has all columns. Because 
the rows are all pretty similar, this graph would look about 
the same for any row. The gamma skewness is twice the CV, 
but the Weibull is consistently lower than the gamma. This 
appears to provide a better representation of the observa-
tions under the row-column model. 

Appendix 3 looks at the sensitivity of the LOOIC measure 
to changing values of λ. 

4.3. SEVERITY 

The data do not have individual payment observations, but 
due to the additive property of the Tweedie, the counts and 
total payments in a cell are enough to model the severity 
distribution. Severity is typically modeled with a constant 
CV across the cells. That requires the Tweedie severity a pa-
rameter to be constant. Each cell gets its own b parameter 
from the row-column model. Then the losses in a cell are 
modeled as Tweedie in a times the number of payments in 
the cell and the b for the cell, with any p. Here p = 2 and 
p = 3, so the gamma and the inverse Gaussian are fitted. 
The model with constant b, so with variance proportional 
to mean, is tested for comparison. If severity is normally 
k–distributed in µw,u, s, k, the payment total is distributed 
normally with mean = µw,u ∗ (counts) and variance =  ∗ 
(counts). 

For the gamma, the model equations are similar to those 
shown in 4.2 for aggregate losses, but now α is fixed across 
cells, not β, and counts are used in the calculation of sever-
ity. The y variable is the observed severity means by cell, 
which have variances of ab2/count, given the gamma claims 
severity with mean ab = α/β and variance ab2 = α/β2. 
This makes the severity mean gamma with both α and β 
multiplied by the counts. The model equations are as fol-
lows: 

Figure 2. Row and column parameters for gamma in 
Stan and full regression, lognormal 

Figure 3. Fitted CV and skewness for gamma and 
Weibull k fits 

• c is uniform(‑30,0) for the severity 
• logalpha is uniform(‑30, ‑1) 
• alpha = exp(logalpha) 
• s is uniform(0.01,0.02), although it was wider in ear-

lier runs 
• v is double exponential(0,s) 
• beta = alpha/exp(x1 * v + c), so alpha/beta is mean 
• y is gamma(alpha * counts, beta * counts), where in 
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Table 8. Severity fit 

Power Skw/CV LOOIC Penalty NLL 

Normal k 3.2 0 97.2 11.6 85.6 

Gamma 2.0 2 87.0 7.4 79.6 

Inverse Gaussian 1.0 3 94.0 9.8 84.2 

The starting point is to use the same seven variables that 
were optimal for aggregate losses. For the gamma distrib-
ution, the parameter graph with (5%,95%) and (20%,80%) 
ranges is shown in Figure 4. From the graph, v[6], which is 
the coefficient for the column 5 slope change, has a mean 
close to zero and a wide range—just the sort of graph that 
indicates a parameter is not needed. Indeed, eliminating 
that parameter improves the LOOIC slightly. The remaining 
variables are the slope changes for rows 2 and 4, and for 
columns 2, 3, 4, and 7. 

The design matrix for those data is now used for the 
three distributions. The gamma with a fixed is the best fit. 
For the inverse Gaussian, holding b constant, which makes 
the variance proportional to the mean, is actually slightly 
better than fixing a. Fit measures and the fitted moments 
are in Table 8, showing that the variance power appears to 
bear an inverse relationship to the skewness—that is, the 
more skewed distributions have the lowest power. 

Figure 5 graphs the resulting level factors (not differ-
ences) for the gamma and the inverse Gaussian. The column 
factors are indistinguishable for the two distributions. 
Severity grows fairly steadily across AYs, and it is highest at 
the fifth lag. The raw severity mean is highest for the sev-
enth and eighth columns but is also highly volatile there. 

It is not possible to use the R Tweedie package within 
Stan, but it can be used with a nonlinear optimizer, such 
as optimx, to estimate the posterior mode parameters. That 
requires a short R program to compute the product of the 
prior, which takes a closed form, with the density from the 
Tweedie package for the cells, whose means come from the 
linear model. We now try that for the Tweedie with a fixed 
across the cells using a Cauchy prior with σ = 0.1. It pro-
duces an estimate of p = 2.1. This is close to the gamma dis-
tribution value of p = 2 and therefore looks pretty good. 

4.4. FREQUENCY 

Cell counts and AY exposures are in the available data, so 
mean frequency in a cell is modeled with the row-column 
model, and the number of claims is modeled with its mean 
equal to the cell frequency mean times the row exposure. 
The Poisson distribution and two forms of the negative bi-
nomial (NB) are fitted. NB1 is the one with variance pro-
portional to the mean, and NB2 has variance as a quadratic 
function of the mean. 

The fit measures are shown in Table 9. NB2 is clearly 
the best fit. Its row and column factors for six chains are 
graphed in Figure 6. Payment frequency declines slightly by 
row and sharply by column. 

Figure 4. Gamma severity parameter ranges, v = 
(a2,a4,b2,b3,b4,b5,b7) 

NB2 takes two parameters, µ, φ, with mean µ varying by 
cell and with variance = µ + µ2/φ for constant φ. As usual, µ 
comes from the exponentiation of the linear model but then 
is multiplied by exposures by cell. The log of φ is given a 
uniform prior. 

The PiG probability mass function is technically of 
closed form, but it uses modified Bessel functions that can-
not be computed for large arguments in double-precision 
arithmetic by the usual methods. However, the dPIG func-
tion in the R package gamlss.dist is able to calculate it. We 
use this method to maximize the posterior mode as was 
done above for the Tweedie severity. The PiG’s NLL is a little 
worse than that of NB2, and its LOOIC is probably similar, 
assuming the shrinkage is comparable. It is a more skewed 
distribution, so the NB2 appears to have enough skewness 
for these data. 

5. EXTENSIONS OF THE ROW-COLUMN MODEL 

We now discuss a few extensions of the basic row-column 
model for this methodology. The aggregate triangle with 
the gamma distribution is used with fixed b, so variance is 
proportional to mean, as it is a good-fitting model and its 
estimation is fast—one or two seconds typically. 

5.1. ADDITIVE COMPONENT 

Müller (2016) suggested expanding the multiplicative 
model with an additive component. He argued that some 
part of loss development is from late-reported claims, and 
these could be more related to exposure than to losses that 
have already emerged. Any AY exposure variable, such as 
premium or policy count, would be the starting point. This 

Stan, beta = 1/b 
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Table 9. Frequency fits 

Distribution LOOIC NLL Penalty 

Poisson 365.1 306.1 59.0 

NB1 302.8 283.8 19.0 

NB2 284.6 271.4 13.2 

Note: NB = negative binomial. 

Figure 5. Row and column severity level parameters 

Figure 6. Frequency row and column factors 

would be multiplied by coefficients by column and then 
added to the row-column mean for the cell. Even a constant 
exposure for all the rows could be used if exposure is not 
available or has already been included, as in a loss ratio tri-
angle. Also, the coefficients could be on a curve fitted across 
the columns, just as the other parameters are. The resulting 
model for the cell mean, µw,u, is 

where Ew is the exposure for AY w (or just a constant) and 
Du represents column parameters. 

The idea that this comes from late-reported claims sug-
gests that the coefficients would all be positive, but another 
possible interpretation is that this is an additive term to 
adjust for bias from a purely multiplicative model. Then it 

would not have to be positive. 
Next, we fit a positive factor by column and apply it to AY 

exposures, with the result added to the row-column means. 
This can be done in logs with another design matrix, x2, for 
the slope changes for the column parameters. This design 
matrix is the same as the column parameter design matrix, 
except that it includes a dummy variable for the first column 
as well. There is also a vector called expo that has the ex-
posures by row, scaled down by 100,000 so the coefficients 
don’t have to be too minuscule. Key model steps are these: 

• logbeta is uniform(‑20,20) 
• beta = exp(logbeta) 
• v is double exponential(0,s) 
• w is double exponential(0,s)—this represents the ad-
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The resulting additive parameter ranges are shown in 
Figure 7. Most of these are centered near zero, with wide 
ranges. Keeping just the first three gives a good fit to the tri-
angle, with LOOIC and NLL of 99.9 and 90.1, respectively, 
compared with 103.6 and 93.8 for the row-column gamma 
model. There are nominally three extra parameters here, 
but the LOO parameter penalty is about the same, at 9.9, 
as the 9.8 of the base model. The penalty comes from the 
out-of-sample fit, which is apparently better with the expo-
sures included. Perhaps the exposures allow more shrinkage 
of the other parameters. The exposure factor is 0.653 for the 
first column and 0.606 for the second. After that, it falls by 
a multiple of 0.545 for each subsequent column. This is be-
lievable as an effect of claims incurred but not reported, as 
it is strongest early on and then practically disappears by 
the end. 

5.2. CALENDAR-YEAR EFFECTS 

Inflation can operate on payment years more than on AYs 
per se, as jury awards and building costs are typically based 
on price levels at the time of payment. This phenomenon 
can be modeled by adding calendar-year factors to the 
model or by using them instead of AY factors. With just di-
agonal and column factors, this approach has been called 
the “separation model” since Taylor (1977). 

Another type of calendar-year effect comes from changes 
in loss processing, which could speed up or slow down pay-
ments in just a few diagonals. Only one or two diagonal pa-
rameters are able to model this. Such effects do not need to 
be projected, but adjusting for them can reduce estimation 
errors on the other parameters. Venter (2007) applied that 
principle to the triangle of Taylor and Ashe (1983), for ex-
ample. 

Either way, the mean for the multiplicative model with 
calendar-year effects included is 

The cell in row w and column u will be on diagonal w + u – 
1, assuming the columns start at 1, and rows and diagonals 
start with the same number. Gw+u–1 is thus the trend fac-
tor, and in this framework it is the exponentiation of a cu-
mulative sum of the modeled second differences that have 
shrinkage priors, just as the As and Bs are. 

Including diagonal parameters can make row and column 
factors ambiguous, so some constraints are needed if all 
row, column, and diagonal factors are to be used. One ap-
proach is to adjust for row levels by such means as dividing 
by premiums or exposures. In that case, it is fair to assume 
there is no overall trend in the AY direction and therefore 
all the trend is on the diagonals. We can still have row fac-
tors, but in the estimation we make them the residuals to 
a trend that runs through them, so that a trend line fitted 
to them would simply be the x-axis. This idea is discussed 
in more detail by Venter and Şahın (2018). But if parameter 
reduction eliminates a fair number of parameters, this step 
might not be necessary. 

Figure 7. Columns 1–10 parameter ranges for 
exposure log slope change variables 

A good starting point for the exploratory analysis is to 
fit both the row-column and the diagonal- column models 
with log regressions in second-difference form. This can 
give an indication as to whether the row or the diagonal 
factors are more explanatory. Usually before this procedure, 
the triangle should be divided by an appropriate AY expo-
sure measure, such as premiums, policy counts, or similar. 
In a row-column model, the row parameters can pick up 
such known row effects, but even in that model, adjusting 
for them first can help with parameter reduction. We ap-
ply this method to the sample triangle using the exposures 
above (divided by 100,000 to keep the loss numbers in the 
same range). 

This triangle with 9 rows actually has 11 diagonals, as 2 
short rows usually found at the bottom of the triangle are 
not provided. The two initial regressions, with all rows and 
columns or all columns and diagonals, have very similar R 
squared values: 95.75% for rows and 95.76% for diagonals. 
But since there are more diagonals, the respective adjusted 
R squared values reverse, at 94.1% and 93.8%. But none of 
the row or diagonal t-statistics are greater than 1.8 in ab-
solute value. This again suggests a Cape Cod model. Just 
small differences among row effects end up as an aspect of 
the resulting MCMC estimation. 

Again LASSO is a good starting point for parameter re-
duction. The negatively correlated variables make it diffi-
cult to know which individually insignificant variables to 
leave out. LASSO selects groups of variables for each λ. 
Running it for each of the two regressions gives possible 
variable sets for use in MCMC. Since all of the row and 
diagonal parameters are individually insignificant, the 
lambda.min variables are taken; with the choices set out 
above, this λ gives the largest set of variables, some of 
which can be eliminated later. All of the columns except 6, 
8, and 9 are included, as are rows 2, 3, and 6, and diagonals 
5, 8, and 11. 

The best row model is with rows 2 and 3 and columns 2, 
3, 4, 5, 7, and 9. It gives a LOOIC of 103.3 with an NLL of 
92.6 and a penalty of 10.7. These are not strictly compara-
ble to the results obtained without dividing the triangle by 
the exposures. The best diagonal model is not as good, with 
a LOOIC of 111.1, an NLL of 101, and a penalty of 10.1. This 
includes only diagonal 5, although including 5 and 8 works 
about as well. Thus the rows provide a better account of this 

ditive column parameters 
• alpha = exp(x1 * v + c) * beta + expo * exp(x2 * w) * beta 

(one could use the dot product for expo) 
• y is gamma(alpha,beta), where in Stan, beta = 1/b 
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Figure 8. Factors 

triangle than do the diagonals. In fact, when the calendar-
year trend is fairly constant, there is usually no need for di-
agonal parameters, since the trend is projected on the row 
and column factors. 

Since there are only a few row and diagonal parameters, 
they can all be included in a single model. Doing so and 
then eliminating parameters near zero leaves just row 2; 
columns 2, 3, 4, 5, and 7; and diagonals 5 and 8. The LOOIC 
and NLL are 99.0 and 89.7, respectively, with a penalty of 
9.3. This is easily the best-fitting model by these measures. 
Similarly to the exposure adjustment, a lower penalty re-
sults, even with the same number of nominal parameters. 

5.3. CALENDAR-YEAR EFFECTS WITH EXPOSURE 
ADJUSTMENT 

Finally, putting it all together, the exposure adjustment is 
included in the row-column-diagonal model. Since the 
whole triangle has already been divided by the exposures, 
just a constant is used instead of the actual exposures by 
row. This simplifies the coding. To keep factors in the same 
scale, the constant used is 10. The code is in Appendix 2.2. 

In this model, column 7 is no longer significant. Table 10 
shows the estimated parameters, and the resulting factors 
for rows, columns, diagonals, and exposures are in Figure 8. 
The exposure factors by column are denoted by d. The re-
sulting LOOIC and NLL are 97.4 and 87.1, respectively, with 
a penalty of 10.3. The exposure parameters do increase the 
penalty a bit in this case. There are nominally 12 parame-
ters in this model, but since they have been shrunk, fewer 
degrees of freedom are used—probably about 7. This is thus 
a fairly parsimonious model to produce the 40 row, column, 
diagonal, and exposure factors plus the constant and β. 

5.4. PARAMETER DISTRIBUTIONS 

It is easy in Stan to extract the sample distributions of the 
parameters. Code for this procedure is in Appendix 2.3. It is 
used here to make a correlation matrix of the parameters, 

shown in Table 11. 
The diagonal parameters c5 and c8 have a lot of corre-

lations with row and column parameters, as does the con-
stant. The exposure parameters d1, d2, and d3 are nega-
tively correlated with each other, as they represent adjacent 
slope changes and thus somewhat offset each other. The 
first row and column parameters, a2 and b2, have a degree 
of correlation as well, and they are both negatively corre-
lated with the constant, which offsets them to some de-
gree—especially a2, as it is the only row parameter. 

6. CONCLUSION 

Reducing overparameterization is known to improve the 
predictive accuracy of models, and parameter shrinkage is 
a proven way to reduce the error variances by reducing the 
actual and effective number of parameters. In loss reserv-
ing, eliminating factors is not usually possible, but making 
factors from the cumulative sum of slope changes facilitates 
parameter reduction. Building a design matrix of slope 
change variables is the starting point, and then LASSO and 
Bayesian parameter shrinkage can be applied to do the esti-
mation. There are R packages for these operations that re-
quire minimal programming. 

In the end, LASSO is more or less a feeder to the MCMC 
estimation, as MCMC provides better tools for determining 
the degree of shrinkage and for measuring predictive ac-
curacy as well as providing parameter uncertainty distri-
butions. MCMC also can handle most probability distrib-
utions. Still, the negative correlation of the slope change 
variables makes it harder to tell which combination of vari-
ables to eliminate. LASSO is a good starting point for this 
purpose, especially in big data sets. 

Extensions of the row-column factor model can improve 
performance. Here, using diagonal trends and including an 
additive exposure-based component both prove helpful. 
These are not unusual findings—including an exposure 
component almost always seems to help, and correcting for 
diagonal events often does. 
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Table 10. Estimated parameters 

cn a2 b2 b3 b4 b5 c5 c8 d1 d2 d3 β 

4.928 0.086 -1.158 -1.444 0.638 0.229 -0.085 0.036 -0.162 -0.213 -0.235 3.706 

Table 11. Parameter correlation matrix 

cn a2 b2 b3 b4 b5 c5 c8 d1 d2 d3 beta 

cn 100% -83% -41% 13% -1% 0% 61% -11% -19% 15% 6% -8% 

a2 -83% 100% 38% -1% 2% 0% -91% 34% 2% -1% -1% 7% 

b2 -41% 38% 100% -18% 5% -1% -35% 3% -17% 3% 25% 4% 

b3 13% -1% -18% 100% 4% 2% 0% -3% -40% 19% 32% -18% 

b4 -1% 2% 5% 4% 100% -1% -3% 4% -9% 4% 5% 4% 

b5 0% 0% -1% 2% -1% 100% -2% 4% 0% -1% 2% 3% 

c5 61% -91% -35% 0% -3% -2% 100% -62% 0% 0% 1% -7% 

c8 -11% 34% 3% -3% 4% 4% -62% 100% 1% 2% -6% 6% 

d1 -19% 2% -17% -40% -9% 0% 0% 1% 100% -85% -19% 11% 

d2 15% -1% 3% 19% 4% -1% 0% 2% -85% 100% -34% -11% 

d3 6% -1% 25% 32% 5% 2% 1% -6% -19% -34% 100% -7% 

beta -8% 7% 4% -18% 4% 3% -7% 6% 11% -11% -7% 100% 
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The gamma distribution with the scale parameter held 
constant across cells makes the variance proportional to the 
mean, which is useful for reserve modeling. The variance-
mean relationship can be further controlled by adding a pa-
rameter for it, as in the normal k and generalized inverse 
Gaussian distributions. Modeling skewness can improve the 
range predictions. Special cases of the Tweedie distribution 
are useful for that, and they also allow for modeling of the 
severity distribution with only counts and amounts in total, 
not individual claims. The Weibull k distribution provides a 
different skewness effect, which can sometimes be appro-
priate. Mixing Poissons by the Tweedie gives two versions 
of popular frequency distributions. 

6.1. IDEAS FOR FURTHER RESEARCH 

After the bulk of the work on this paper was completed, 
a new R MCMC package became available. BayesianTools 
does MCMC estimation with a version of the Metropolis 
sampler for any probability distribution whose likelihood 
can be computed in R. This would include the Tweedie and 
PiG distributions along with the Sichel—a more general-
ized, heavy-tailed count distribution. It is not mature soft-
ware like Stan and seems to crash easily by getting para-
meter values that generate infinities, but it is promising. 
Preliminary tests confirm the random effects–posterior 
mode results for the Tweedie and PiG discussed in Sections 
4.3 and 4.4 by getting the posterior mean fits. The main 

difficulty is the package’s delicacy in needing good starting 
points. 

The heavy-tailed count distributions can be useful to 
actuaries now and then, but the reparameterized Tweedie 
would appear to have a lot of potential applications, for 
both severity and aggregate samples. Most triangles have 
aggregate losses. This Tweedie variance and mean use just 
the a and b parameters, and the skewness needs just a and 
p. This makes it easy to get a desired moment combination. 
It is more convenient this way than using most of the trans-
formed beta-gamma family, for instance. 

For 1 < p < 2, the Tweedie has a positive probability at 
0 and so can accommodate data with some 0 values, which 
occur often in triangles. The standard parameterization also 
accommodates 0 values of p, with slightly different mo-
ments, so the two could be compared to fine-tune the fit. 
Both parameterizations will work with the R Tweedie pack-
age and so could have parameter shrinkage applied. Quasi-
likelihood is usually used for the standard version, but it is 
not clear how to apply shrinkage there. Probably it could 
be done by adapting the random effects–posterior mode ap-
proach, and there might be a way to get MCMC to treat the 
quasi-likelihood as a likelihood. But there seems little rea-
son to do that if the density is already calculable in R. 
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APPENDICES 
APPENDIX 1. PRIOR AND CONDITIONAL PROBABILITY 
DISTRIBUTIONS 

A1.1. AGGREGATE LOSS DISTRIBUTIONS 

A1.1.1. TWEEDIE 

The Tweedie distribution is usually parameterized so that 
EX = µ and VarX = . However, its derivation starts out 
as a member of a class called the “exponential dispersion 
family,” with parameters p, λ, and θ having EX = λθ and 
VarX = λθp. Then taking µ = λθ and φ = λ1−p gives 
the usual form. This form has computational advantages re-
lating to quasi-likelihood estimation, but as computation 
gets less expensive, this issue declines in importance. Good 
references for these distributions include Jørgensen (1987, 
1997) and Renshaw (1994). The Wikipedia article on the 
Tweedie distribution gives a good summary as well. 

Getting the variance =  requires making φ a function 
of p. Using parameters s, k with  the variance 
becomes 

for any k, which is an additional parameter. 
For a single cell, it is meaningless to say the variance is 

proportional to a given power of the mean, because you can 
make two fixed numbers proportional with any power you 
want. It is when you make some parameters constant across 
all the cells that the variance can be proportional to a power 
of the mean for the whole data set. So if you make φ and p 
constant across the cells, you get the variance proportional 
to . But if you make s, k, and p constant across the cells, 
the variance is then proportional to µk across the data set. 

The Tweedie family in the original parameterization with 
fixed p, θ is closed under addition of independent variates, 
with ΣXj having parameters λ0 = Σλj, θ, p. In the com-
mon parameterization, λ = φ1/(1–p), the φ parameter for 
ΣXj is 

This supposes that θ = µj/λj =  is constant among 
the summands. Then µ0 = θλ0. 

The family with fixed p, λ is closed under multiplication 
by a constant, c. In the φ, µ, p form, suppose that the re-
sulting parameters are φ0, µ0, p. Since E(cX) = cEX and 
Var(cX) = c2VarX, we must have µ0 = cµ and 

This leads to φ0 = c2−pφ. 
Another parameterization, which makes the sum and 

scale results much more convenient, has parameters a, b, p 
with a = θ2−pλ and b = θp−1. Then ab = λθ = EX, and ab2 

= λθp = VarX. Looking at ΣXj with fixed θ, p: since λj = 
θp−2aj, we have 

For cX, we have EcX = cEX = cab = a0b0 and Var(cX) = c2ab2 

= . Then dividing variance by mean and dividing mean 

squared by variance produces b0 = cb and a0 = a, respec-
tively. Thus b is a scale parameter, and the a shape parame-
ters add across independent distributions. This procedure 
can be used, for instance, in simulating the sum of individ-
ual claims from a Tweedie severity. 

Although p does not appear in the mean and variance 
formulas, it is still part of the distribution. In fact, Skw(X) 
= . More generally for the Tweedie, Skw(X) = pCV(X), 

where CV is the coefficient of variation, that is, the standard 
deviation divided by the mean. This follows from a more 
general formula of Renshaw (1994) for skewness in the lin-
ear exponential family. Thus in the µ, φ, p parameteriza-
tion, Skw(X) = . In the µ, s, k, p parameterization, 
Skw(X) = . The p parameter may or may not appear 
in the variance of the Tweedie, but it is key in the skewness. 
That is the fundamental significance of the choice of p. 

In the a, b, p parameterization, fixing b across the cells 
makes the variance proportional to the mean for any choice 
of p. This is possibly useful for modeling aggregate losses. 
On the other hand, fixing a across the cells makes the vari-
ance proportional to the mean squared, which could be use-
ful for severity. In this parameterization, the mean and vari-
ance are the same as those usually given for the gamma 
distribution. Thus the Tweedie can be looked on as a gener-
alization of the gamma wherein there is another parameter, 
p, for the skewness. 

In general, E(X − EX)3 = EX3 − 3EX2EX + 2(EX)3 and 
Skw(X) = E(X − EX)3Var(X)‑1.5. In terms of a, b, p, some mo-
ments are these: 

These combine to give Skw(X) = . 

The Tweedie with 1 < p < 2 in particular has been used 
for aggregate losses. It can be derived as a Poisson fre-
quency and a gamma severity with frequency and severity 
both smaller in smaller cells. See Meyers (2009) or Venter 
(2007). In loss triangles, however, the smaller cells often 
have larger severity. The gamma/Poisson interpretation is 
not necessary to use these values of p, but there still will be 
a positive probability at 0. 

The gamma distribution is the Tweedie with p = 2, and p 
= 3 gives the inverse Gaussian. With p = 1, the probability 
is positive only at integer multiples of b. This is sometimes 
called the “overdispersed Poisson,” but it could be underdis-
persed as well. The Poisson occurs when b = p = 1. The only 
other closed-form density is p = 0, the normal distribution. 
For the inverse Gaussian density in the a, b, p = 3 parame-
terization, the density is 

The R package Tweedie has distribution and density func-
tions and inverses for simulation with p ≥ 1. It uses the µ, 
φ, p parameterization, so to use it for the a, b, p parame-
terization, set µ = ab and φ = a1−pb2−p. To use the µ, s, k, p 
parameterization, set φ = sµk−p. 

There is no Tweedie with 0 < p < 1. For p < 0, the Tweedie 
is very heavy tailed but is shaped like a negatively skewed 
mean-zero distribution on the real line. It is a generaliza-

• EX2 = ab2 + a2b2 

• EX3 = b3(pa + 3a2 + a3) 
• E(X − EX)3 = pab3 
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tion of the standard normal called an “extreme stable dis-
tribution.” The density contains an infinite sum and is a 
function of p and λ in the original parameterization (Jør-
gensen 1997). For the standard normal, (X1 + … + Xn)/
is also standard normal. For the Tweedie with p ≤ 0 and Xj 
independent and identically distributed in λ, p, (X1 + … + 
Xn)n(p−1)/(2−p) is also Tweedie in λ, p. This is the basic re-
quirement for a distribution to be stable. The standard nor-
mal is the case p = 0. 

A1.1.2. NORMAL K 

The constant variance of the normal does not work for tri-
angle fits because the variance decreases for the later cells. 
One way to address this heteroskedasticity is to set 

 for parameters s, k. This method adds an ad-
ditional parameter. It is not meaningful when fitting a nor-
mal to a single distribution, because for any two values of 
k, you can find two values of s that will give the same σ2. 
It is only when you need distributions for each cell that this 
procedure becomes useful. The main drawback of this dis-
tribution is that it has zero skewness. 

A1.1.3. GAUSSIAN–INVERSE GAUSSIAN, OR GIG 

The inverse Gaussian distribution is the Tweedie with p = 3. 
The name arises for some abstract reason not usually rele-
vant. It has skewness = 3CV, which is more skewed than the 
gamma but less than the lognormal. Most reserve cell dis-
tributions have less skewness than this, so a weighted aver-
age of the Gaussian and inverse Gaussian distributions with 
the same mean and variance can encompass a good number 
of the triangles actuaries have to deal with. The GiG here is 
built around , so the parameters will be s, k, the 
row and column parameters defining the cell means, and a 
parameter v in (0,1) for percentage Gaussian. 

The inverse Gaussian density is closed in form but a bit 
complicated, so it is often easier to use a packaged function. 
Most published density functions and programmed soft-
ware use the µ, φ parameterization, often in 1/φ, so set 
1/φ = a2b to match mean and variance. 

A.1.1.4. WEIBULL K 

The Weibull distribution with parameters λ, h has f(x) = 
 and F(x) = . The moments are 

gamma functions and are more compact with the notation 
n! = Γ(1 + n), which agrees on the integers. Then EX = 

and VarX = . These give CV2 =  – 1. The 

skewness is /CV3 − 3/CV. The skewness is negative 

for h > 3.60235 or so and gets large for small h. This gives a 
range of distribution shapes. For the heteroskedasticity in a 
reserve triangle, it again might be helpful to be able to set 
VarX = s(EX)k. This would require 

Unfortunately, this would have to be solved numerically. 
There are various root finding programs that can solve for h 
inside of an estimation routine. This is easier in logs due to 

limitations of double-precision numbers. Calling the right 
side v, the equation to solve is 

This can be done, for example, by iterating with Newton’s 
method starting at some value h0 and setting hj+1 = hj – 
g(hj) / g’(hj). For this purpose, g’(h) is easy enough with 
the digamma function ψ(x) = ∂logΓ(z)/∂z, which is widely 
available in software packages. Using this function, 

Stan has a function called algebraic_solver that is a root 
finder for nonlinear systems of equations. The root of g(h) 
can also be found by defining g(h) as a function, using a 
strict protocol, and then calling algebraic_solver. It uses a 
reliable and efficient derivative-free search routine called 
Powell’s hybrid algorithm to find the root. Both using this 
function and writing a custom function to do the Newton’s 
method calculation work fine, but both are very slow. 

A1.2. SEVERITY DISTRIBUTIONS 

Severity in loss triangles does not usually have the same 
heteroskedasticity problems that aggregate loss has, so any 
severity distribution can be tried. Typically the variance is 
proportional to the mean squared for severity. Thus the a, 
b, p form of the Tweedie with a fixed across cells is a good 
starting point. The tail is not usually as heavy for individ-
ual cells as it is for the whole severity distribution used for 
pricing. The additive form property of the a, b, p parameter-
ization makes it easy to use when the data include only the 
number of payments, nw,u, and total payments, xw,u, for the 
cell. Then xw,u is distributed as nw,ua, bw,u, p. For the normal 
k, xw,u is normal with mean µw,unw,u and variance . 

A1.3 FREQUENCY DISTRIBUTIONS 

A1.3.1. POISSON 

The Poisson is the Tweedie with p = b = 1, and a is usually 
called λ. Some moments are as follows: 

One problem is that the variances of the cells have to 
pick up the Poisson variability as well as any specification 
error in the mean, and the Poisson variance can be too lim-
ited for this purpose. 

A1.3.2. THE TWEEDIE MIXTURE OF POISSONS, OR “TWEEP” 

Adding some variability to the Poisson is often done by as-
suming the Poisson λ is itself uncertain, and assigning a 
distribution for that. The most common case is to use a 
gamma distribution for λ, which yields the negative bino-
mial. But this is often misapplied. If there is a population 
of drivers, for example, each with a Poisson distribution for 
number of accidents in a year, with λj for driver j, then 

• EN = Var(N) = λ 
• Skw(N ) = 
• EN2 = λ + λ2 

• EN3 = λ + 3λ2 + λ3 

• E(N − EN)3 = λ 
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the number of accidents for the whole population is Poisson 
in Σλj. This is just a case of the additive property of the 
Tweedie. The negative binomial arises if a driver is chosen 
at random, with unknown λj that is gamma distributed. 

Assume λ is distributed as Tweedie a, b, p. To get the 
moments, use the formula Eg(N ) = EE[g(N)|λ]. Then 

The last item requires a bit of algebra. After a little more, 

In the frequency world, some, such as Mathematica docu-
mentation, use the notation r = a, q = b/(1 + b). Then b = q/(1 
– q), 1 + b = 1/(1 – q), and b(1 + b) = q/(1 – q)2. It is even more 
common to use p instead of q, but here p is already used for 
the Tweedie skewness parameter. Substituting this notation 
produces the following: 

Hougaard, Lee, and Whitmore (1997) discussed the TweeP 
and provided a formula for computing the probabilities for 
any p > 1 except 2, which they reported works up to about 
n = 150 before running into problems with double-precision 
representations. This would be fine for distributions with 
small counts, such as claims per policy, but it would not 
handle aggregate claims from larger business units. Some 
special cases discussed below have closed-form distribu-
tions for any n. 

Hougaard, Lee, and Whitmore (1997) started by intro-
ducing three transformed parameters to simplify the formu-
las, defined by α = (p − 2)/(p − 1), 1/δ = , and 1/θ = 
2µ2φ. Then they defined the coefficients cn,j(α) recursively 
by solving cn,0(α) = Γ(n − α)/Γ(1 − α) and cn+1,j+1(α) = (n 
− (j + 1)α)cn,j+1(α) + cn,j(α). Finally, 

A1.3.3. NEGATIVE BINOMIAL 

The negative binomial is the TweeP with p = 2. It has a 
closed-form probability mass function. In the q, r form it is 

It has mean = ab = m = qr/(1 – q), variance = ab(1 + b) = qr/(1 
– q)2 = m/(1 – q) and skewness = (1 + q)/  = (1 + q)CV. 

As with the Tweedie, two basic forms for cell distribu-
tions come about by fixing either a or b across the cells. If b, 
and therefore q, is fixed across the cells, then the variance is 
proportional to the mean. If a, and therefore r, is fixed, it is 
convenient to eliminate q by qr = m – qm, so q = m/(r + m). 
Then 1 – q = r/(r + m). The variance m/(1 – q) then becomes 

m(r + m)/r or m + m2/r. Thus the variance is a quadratic func-
tion of the mean. 

The second is the form used in GLM and often works bet-
ter as a distribution of residuals, perhaps because the part 
of the residual distribution that comes from estimation er-
ror for the mean is large enough in large cells to benefit 
from the mean squared term. The probability mass function 
then is as follows: 

A1.3.4. POISSON–INVERSE GAUSSIAN, OR PIG 

The Poisson mixed by the inverse Gaussian is the TweeP 
with p = 3. It has the same mean and variance as the neg-
ative binomial. The skewness is (1 + q + q2)/ . It is thus 
a slightly more skewed alternative to the negative binomial. 
It also has the two forms of parameterization across a data 
set. As usual, they both give the same distribution for a sin-
gle sample—that is, a sample not involving multiple cells, 
such as statewide accident frequency. The density has cal-
culation issues, but the probability-generating function in 
the m, r parameterization is this: 

See Dean, Lawless, and Willmot (1989), who also gave a re-
cursive algorithm for calculating f(n; m, r), which is a bit 
simpler than the algorithm of Hougaard, Lee, and Whit-
more (1997), with p = 3, α = ‑1/2. There is an exact prob-
ability mass function involving modified Bessel functions. 
However, these can run into problems with double-preci-
sion representations if there is a large number of claims. 
Perhaps 40- to 50-digit precision could be needed to calcu-
late them in some cases. R does have specialized functions 
for arbitrary-precision numbers, but not every Bessel func-
tion application uses them. The modified Bessel function of 
the first kind is defined as follows: 

The modified Bessel function of the second kind, which is 
the same thing as the modified Bessel function of the third 
kind—an obsolete but stubborn term—is this: 

α π

In light of this calculation (see Zha, Lord, and Zou 2016), 
the PiG probability mass function is 

where α = . 
The dPIG function in the R package gamlss.dist seems to 

be able to calculate this with any m, so it probably uses ar-
bitrary-precision numbers. 

A1.3.5. SICHEL DISTRIBUTION 

The Sichel is a three-parameter distribution that comes 
from mixing the Poisson by a generalization of the inverse 
Gaussian. Its skewness is greater than that of the negative 
binomial and can be greater than that of the PiG as well. 
Rigby, Stasinopoulos, and Akantziliotou (2008) is a good 
source for this and other heavier-tailed count distributions. 

• EN = EE[N|λ] = Eλ = ab 
• EN2 = EE[N2|λ] = E[λ + λ2] = ab + ab2 + a2b2 

• Var(N) = ab(1 + b) 
• EN3 = EE[N3|λ] = E[λ3 + 3λ2 + λ] = pab3 + 3a2b3 + 

a3b3 + 3ab2 + 3a2b2 + ab 
• E(N − EN)3 = EN3 − 3EN2EN + 2(EN)3 = pab3 + 3ab2 + 

ab 
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Venter (2011) applied the Sichel to mortality data relevant 
for workers compensation and found that it fit slightly bet-
ter than the negative binomial. 

The Sichel probability function is also closed in form us-
ing the Bessel functions. It is as follows: 

where α =  and c = Kν(r)/Kν+1(r). 
It has the same mean and variance as the PiG, which is 

the special case ν = ‑1/2. The parameter ν can be any real 
number. The negative binomial is a limiting case. Higher 
moments are shown in the appendix of Rigby, Stasinopou-
los, and Akantziliotou (2008), but the c there is 1/c here, 
and σ is 1/r. The density function is available in the R 
gamlss.dist package. 

A1.3.6. OTHERS 

The zero-truncated frequency distributions, which elimi-
nate the positive probability at zero, provide further 
choices, and there are other mixtures as well. The appendix 
of Klugman, Panjer, and Willmot (2008) is a good starting 
point for these. 

A1.4. DISTRIBUTIONS FOR USE AS SHRINKAGE PRIORS 

Shrinkage priors are mean-zero priors that push parameters 
toward zero, which can be offset by the likelihood increase 
if the parameter is important to creating a better-fitting 
model. In both classical and Bayesian estimation, these off-
setting priorities are balanced by finding parameters that 
give high values to the sum of the log-likelihood plus the 
log of the prior probabilities of those parameters. Shrinkage 
can be done toward any value, but only the mean-zero ver-
sions are used here. 

A1.4.1. NORMAL DISTRIBUTION 

If the parameter β is distributed as normal(0,σ), the log of 
the density is as follows: 

Constants—meaning any terms whose parameters are not 
being estimated—can be ignored in the estimation. In fact, 
with a fixed value of σ, the estimation would look for 
higher values of 

. This value is what is maximized 

in ridge regression, for selected values of γ = 2/σ2. 

A1.4.2. LAPLACE DISTRIBUTION 

The Laplace density on the real line is 

It has variance = 2σ2 and kurtosis = 6. 
Also, log[f (β|σ)] = ‑log(2) – log(σ) – β|σ. With a fixed 

value of σ, the estimation seeks high values of [log-like-
lihood – Σ|βj|σ]. This is maximized in LASSO. Shrinkage 
with the Laplace prior is thus called Bayesian LASSO. 

A1.4.3. CAUCHY DISTRIBUTION 

The Cauchy is just the Student’s-t distribution with 1 degree 
of freedom, so it is heavy-tailed. In fact, the mean does not 
even exist, as the integral defining it does not converge. The 
density and its log are as follows: 

Thus, ignoring constants and for a fixed value of σ, the op-
timization would be on [log-likelihood − Σlog(  + σ2)]. 
This is not a common classical method, but perhaps it 
should be. 

The Cauchy prior is usually used with a smaller value of 
σ than the one used for the Laplace prior. It then puts more 
weight on small values of the parameters but still allows 
occasional larger values if they provide enough improve-
ment in the log-likelihood. In this way, it usually produces 
more parsimonious models than the Laplace does, but often 
with only a slight reduction in log-likelihood. It is becom-
ing more popular as a shrinkage prior, and the classical ana-
logue could provide a similar improvement over LASSO. 

A1.4.4. SCALED T PRIOR 

The scaled t distribution with ν degrees of freedom and its 
log are expressed in the following equations: 

π

This distribution has variance = σ2ν/(ν – 2) for ν > 2 and 
kurtosis = 3 + ν/(ν – 4) for ν > 4. The Cauchy is the spe-
cial case ν = 1, and the normal is the limiting case as ν → 
∞. The case ν = 6 provides a reasonable approximation of 
the Laplace. For this ν, it and the Laplace have kurtosis of 
6, and a Laplace σ of  matches the variance of the t with 
σ = 1. As there are no odd moments and only five moments 
exist for ν = 6, the Laplace thus matches all existing mo-
ments of this t. Figure 9 graphs the densities. 

A1.4.5. ESTIMATING Σ 

The fully Bayesian approach includes σ as a parameter to 
be estimated. If it has a uniform prior with density K over 
an appropriate interval, the log density in the Laplace case 
becomes this: 

In the estimation, K drops out as a constant, but now the 
log(σ) has to be included, since σ is a parameter. The pos-
terior mode with n parameters then maximizes [log-likeli-
hood − n ∗ log(σ) − Σ|βj|/σ]. This is one possibility for a 
classical LASSO estimate of σ, and so λ, but the uniform 
prior is just one possible choice, so other values of λ might 
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Figure 9. Student’s t with 6 degrees of freedom versus Laplace densities 

be worth considering as well. 
Initially I also tried putting a prior on the ν parameter 

of the scaled t distribution. That would provide a Bayesian 
estimate of how heavy a tail the prior should have. Initial 
model runs always ended up with ν somewhere between 
0.8 and 1.2 for the data here, which is pretty close to the 
value of 1.0 that produces the Cauchy. However, estimates 
for the Laplace and Cauchy priors were very close for these 
small models, and LASSO was used as an intermediate step, 
so the Laplace prior was used in the estimates in the exam-
ple. 

APPENDIX 2. LASSO AND STAN CODE 

This appendix discusses how to design the package code for 
a project. The code I used here is given as an example, with 
package output connected, but it is not necessarily optimal 
for processing speed. 

A.2.1. LASSO 

The design matrix can feed right into LASSO software to 
get a start on parameter reduction. Illustrated here is the 
R package glmnet. The data y and the design matrix x are 
put in text files swissy.txt and swissx.txt first. This R code 
sets up and runs glmnet, given that it has already been in-
stalled. Standardization is turned off because the design 
matrix consists of dummy variables that count how many 
times a slope change is added in. 

library(glmnet) 
y = scan('swissy.txt') 
x = read.table('swissx.txt', header = FALSE) 
x = as.matrix(x) 
N = length(y) 
U = ncol(x) 
fit1 = glmnet(x, y, standardize = FALSE) 

Figure 10. LASSO parameter growth with shrinkage 
reducing 

The program estimates the parameters for up to 100 val-
ues of λ, depending on some internal settings. This func-
tion prints out (Figure 10) a graph of the parameter values 
as λ decreases, going from left to right, with the variables 
numbered 1–19. The top axis is the number of nonzero pa-
rameters, and the bottom is the L1 norm, Σ|βj|, both of 
which increase as λ decreases. 

plot(fit1, label=TRUE) 

The parameters can increase and decrease as λ changes 
since they are negatively correlated and thus, to some de-
gree, can substitute for each other. Variable 9, in green at 
the bottom of Figure 10, is the parameter for the second col-
umn of the matrix, which is a significant drop, and it is the 
last one to leave the model as λ increases. 

In the next block of R code, print(fit1) calculates and 
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prints out three columns (not shown) for each λ: df, the 
number of nonzero parameters; %Dev, the R squared in this 
regression case; and then λ itself, in decreasing order of λ 
and increasing order of df. I call these dof, rsq, and lambda, 
and use them to calculate NLL + λΣ|βj| – k * logλ, the 
quantity to be minimized if λ has a uniform prior, for each 
row. That is called min and is printed out with λ next. 

answer = print(fit1) 
lambda = answer[,3] 
rsq = answer[,2] 
dof = answer[,1] 
sst = sum((y-mean(y))^2) 
ssr = (1-rsq)*sst 
sigsq = ssr/(N-dof) 
NLL = N*log(sigsq)+ssr/2/sigsq 
beta = fit1[[2]] 
h=dim(answer)[1] 
k=dim(x)[2] 
L1 = c(1:h) 
for(i in 1:h) L1[i] = sum(abs(beta[2:k,i])) #sum 
    of absolute values 
min = NLL-dof*log(lambda)+lambda*L1 
lambda 

##   [1]    5.6980000    5.1920000    4.7310000 
  4.3110000    3.9280000    3.5790000    3.2610000 
##   [8]    2.9710000    2.7070000    2.4670000 
  2.2480000    2.0480000    1.8660000    1.7000000 
##  [15]    1.5490000    1.4120000    1.2860000 
  1.1720000    1.0680000    0.9729000    0.8865000 
##  [22]    0.8077000    0.7360000    0.6706000 
  0.6110000    0.5567000    0.5073000    0.4622000 
##  [29]    0.4212000    0.3837000    0.3496000 
  0.3186000    0.2903000    0.2645000    0.2410000 
##  [36]    0.2196000    0.2001000    0.1823000 
  0.1661000    0.1514000    0.1379000    0.1257000 
##  [43]    0.1145000    0.1043000    0.0950500 
  0.0866100    0.0789200    0.0719100    0.0655200 
##  [50]    0.0597000    0.0543900    0.0495600 
  0.0451600    0.0411500    0.0374900    0.0341600 
##  [57]    0.0311300    0.0283600    0.0258400 
  0.0235500    0.0214500    0.0195500    0.0178100 
##  [64]    0.0162300    0.0147900    0.0134700 
  0.0122800    0.0111900    0.0101900    0.0092870 
##  [71]    0.0084620    0.0077100    0.0070250 
  0.0064010    0.0058320    0.0053140    0.0048420 
##  [78]    0.0044120    0.0040200    0.0036630 
  0.0033380    0.0030410    0.0027710    0.0025250 
##  [85]    0.0023000    0.0020960    0.0019100 
  0.0017400    0.0015860    0.0014450    0.0013160 
##  [92]    0.0011990    0.0010930    0.0009958 
  0.0009073    0.0008267    0.0007533    0.0006864 
##  [99]    0.0006254    0.0005698 
min 

##   [1]  139.1546578  128.5099482 
    119.2727479  110.2654986  101.5464556 
##   [6]   93.1729916   85.1716841 
     77.6168526   70.5099937   63.9140876 
##  [11]   57.8211853   52.2532368 
     47.2379003   42.7012551   38.6963721 
##  [16]   35.1559199   32.0395586 
     29.3520893   27.0057140   25.0460777 
##  [21]   23.3507511   21.9024199 
     20.6774497   19.6905216   18.8214565 
##  [26]   18.1204360   17.5483675 
     17.0637192   16.7143903   16.4110022 
##  [31]   16.1538759   15.9435496 
     15.8276049   15.7128830   13.4839918 
##  [36]    9.3518397    5.5858747 
      4.4655629    1.1074878   -2.3413246 
##  [41]   -5.3021017   -5.2037415 
     -7.4618867   -9.2628828  -10.8067730 
##  [46]   -9.2122464  -10.2469277 
    -14.1664652  -14.8062671  -15.2758039 

##  [51]  -15.5672680  -12.3776308 
    -12.9763013  -13.3960749   -9.7473662 
##  [56]  -10.0955550  -10.3551425 
    -10.4168976  -10.4854673   -1.7043340 
##  [61]   -2.0199045    1.9086412 
      1.3079381   -3.7673173   -4.0607240 
##  [66]   -4.1319612    0.8366980 
      0.8321761    0.9443275    1.1637626 
##  [71]    1.5035898    1.8398307 
      2.4239278    2.8805064   15.0096378 
##  [76]   15.2633089   15.7676314 
     16.3980934   23.1392631   30.4838019 
##  [81]   37.3736464   44.8752963 
     45.7278083   53.3901917   54.6076325 
##  [86]   55.6780471   56.8859274 
     58.2370121   59.5790237   60.9277201 
##  [91]   62.2826403   63.6308198 
     64.9699640   66.4593997   67.8064965 
##  [96]   69.2943538   70.6396882 
     80.2739272   81.8555927   83.4379203 

The minimum of this function is at the 51st cell, where 
λ = 0.05439. Since the uniform prior is only one possible 
choice, other values of λ should be considered as well. 
Adding a few more variables is a sound choice, as they can 
be eliminated later in Bayesian LASSO if they are not 
needed. The 59th value is at the end of the area of low val-
ues of min, with λ = 0.02584. Cross-validation is done in 
a function called cv.glmnet, which produces its own target 
range for λ between lambda.min and lambda.1se. 

cvfit = cv.glmnet(x, y, standardize = FALSE) 
cvfit$lambda.1se 

## [1] 0.1256568 

cvfit$lambda.min 

## [1] 0.01019241 

The variables and coefficients for selected values of λ 
are given by the coef function. 

coef(cvfit, s=c(0.01118616, 0.02584, 0.05439, 
    0.11449)) 

## 18 x 4 sparse matrix of class "dgCMatrix" 
##                       1             2 
                3            4 
## (Intercept)  4.96801195  5.014613e+00 
     4.960018e+00  4.775570560 
## V1           0.13797768  7.511297e-02 
     1.940272e-02  0.003674287 
## V2          -0.03868051  . 
     .             . 
## V3           .           . 
     .             . 
## V4           .           . 
     .             . 
## V5          -0.17133069 -1.153241e-01 
    -5.443126e-06  . 
## V6           .           . 
     .             . 
## V7           .           . 
     .             . 
## V8           .           . 
     .             . 
## V9          -1.30479742 -1.442692e+00 
    -1.321330e+00 -1.157271291 
## V10         -0.48333616 -1.432428e-06 
     .             . 
## V11          0.65565734  1.302843e-01 
     .             . 
## V12          0.50612353  6.865177e-01 
     6.936972e-01  0.373278485 
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## V13          .           . 
     .             0.136026729 
## V14          0.09814611  1.273081e-01 
     6.540153e-02  . 
## V15          .           1.700821e-06 
     .             . 
## V16          .           . 
     .             . 
## V17          0.48927296  . 
     .             . 

A.2.2. STAN 

A2.2.1. AGGREGATE EXAMPLE 

Below is the code used for estimating the gamma distrib-
ution with fixed b, so with variance proportional to mean, 
from the reduced design matrix. Most of the code is for 
setup purposes—declaring the variable types and dimen-
sions, and so on. Now the y variable is in monetary units, 
but the model is still fitted in logs. The cell gamma mean is 
the exponentiation of the sum of the log parameters for that 
cell, which makes the parameters slightly different than 
they would be for estimating the mean of the log. 

data { 
int N; // number of obs 
int U; // number of variables 
vector[N] y; 
matrix[N,U] x1;  //design matrix with U columns 
} 
parameters { // all except v will get uniform 
    prior, which is default real<lower=4, 
    upper=16> cn;  //constant term, starting 
    in known range vector[U] v;  // the parameters 
real<lower=-5, upper = -0.2> logs; //log of s, 
    related to lambda, not too high real<lower 
    =-20, upper = 20> logbeta;  //log of beta 
} 
transformed parameters { 
real beta; 
real s;   // shrinkage parameter, like lambda 
vector[N] alpha;  //fitted means 
beta = exp(logbeta); //for positive parameter, 
    uniform on log is like 1/X 
s = exp(logs); // 1/X gives more weight to lower 
    values, which is good if X not big 
alpha = exp(x1*v+cn)*beta; 
} 
model { // gives priors for those not assumed 
    uniform. Choose this one for lasso. 
for (i in 1:U) v[i] ~ double_exponential(0, s); // 
    more weight to close to 0 
for (j in 1:N) y[j] ~ gamma(alpha[j], beta); 
} 
generated quantities { //outputs log likelihood 
    for testing purposes vector[N] log_lik; 
for (j in 1:N) log_lik[j] = gamma_lpdf(y[j] | 
    alpha[j],beta); 
} 

Stan parameterizes the gamma with parameter beta = 
1/b, and alphaw,u is set, so the mean is alphaw,u/beta. Stan 
also uses the parameter s = 1/λ for the Laplace = double 
exponential prior, and here s is taken as a parameter to 
be estimated. Unless otherwise stated, all parameters are 
taken to have uniform priors over their defined ranges. The 
transformed parameters are intermediate calculations, do 
not have priors, and are not estimated. The generated quan-
tities section creates additional outputs, here the log-like-
lihood for each point for each parameter sample for the 
LOOIC calculation. 

The range defined for the constant was informed by the 
LASSO result but is wider than it needs to be. Beta is defined 
by giving its log a wide uniform prior. That is similar to giv-
ing it a prior of 1/x. This is appropriate for a parameter that 
can be either a number or that number’s reciprocal. 1/beta 
would have the same prior—its log would be uniform on the 
real line (limited by ±10310 or so by double-precision num-
bers). Also, the 1/x prior often gives the classical unbiased 
estimate for a positive parameter. This is similar for s, but 
it was given a smaller range. Too high a value can get into 
convergence problems. After some experimentation, a6 was 
replaced with a4, which gives a better fit by LOOIC and NLL. 

A2.2.2. INCLUDING EXPOSURE 

In the code below, w is the vector of coefficients for the ex-
posure column parameters, and x_expo is the correspond-
ing design matrix. The exposure by row is in a vector expo, 
but this is divided by 10,000 to put it on a more useful scale. 
The alpha by cell is built up from the row-column mean, the 
exposure component, and beta. Losses are assumed to be 
gamma distributed. 

alpha = exp(x_expo*w); //expo design matrix for 
    log 2nd diff * parameters 
for (i in 1:N) alpha[i] = alpha[i]*expo[i]/10000; // 
    multiply by row exposure 
alpha = (alpha + exp(x1*v+cn))*beta; // add in 
    row-col mean to give mean, alpha 
} 
model { // gives priors for those not assumed 
    uniform. This one for lasso. 
   for (i in 1:U) v[i] ~ double_exponential(0, s); 
   for (i in 1:V) w[i] ~ double_exponential(0, s); 
for (j in 1:N) y[j] ~ gamma(alpha[j], beta); 
} 

Here the exposure adjustment is included in the row-col-
umn-diagonal model. Since the whole triangle has already 
been divided by the exposures, just a constant is used in-
stead of the actual exposures by row. This simplifies the 
coding. To keep factors at the same scale, the constant used 
is 10. 

alpha = (10*exp(x_expo*w) + exp(x1*v+cn))*beta; 
for (j in 1:N) y[j] ~ gamma(alpha[j], beta); 

A2.3 EXTRACTING SAMPLES FROM STAN OUTPUT 

fit3p_ss = extract(fit3p, permuted = FALSE) #Need 
    FALSE to get array 
fit3p_ss = fit3p_ss[,,1:14] #Only need first 14 
dim(fit3p_ss) = c(4000,14) #Collapses dimensions 
corrM = cor(fit3p_ss) #Correlation matrix 
write.csv(corrM, file = "cormatAPCexp.csv") 

The extract function gives every variable or transformed 
variable plus other things. Here it is a (1,000, 4, 139) array, 
so it goes by sample and then by chain. The parameters are 
in the first 14 elements, so only those are needed here. R 
keeps an array in a long vector with notation on how it is 
arranged. The dim function can collapse adjacent dimen-
sions, giving just a table. Then the correlation matrix is 
computed by the cor function. 
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Table 12. Aggregate triangle gamma LOOIC sensitivity to s 

s LOOIC Penalty 

0.01 230.1 0.8 

0.02 217.3 2.5 

0.03 137.0 9.3 

0.04 114.5 10.0 

0.06 107.7 9.9 

0.09 105.4 9.9 

0.12 104.8 10.1 

0.13 104.5 10.0 

0.14 103.9 9.5 

0.50 103.9 10.0 

100 104.1 10.2 

APPENDIX 3. SENSITIVITY OF LOOIC PENALIZED 
LIKELIHOOD TO 

Usually it is not considered good practice to select regres-
sion variables by maximizing AIC and so on, as that would 
increase the chance of getting a spurious result. There is 
a similar risk involved in choosing λ to maximize LOOIC. 
Putting a prior on λ and then taking the posterior mean, 
not the mode, is the fully Bayesian approach. That was done 
in the examples. Nonetheless it is interesting to see how 
LOOIC responds to changes in λ. We look at that here for 
the gamma row-column fit to aggregate losses. 

Instead of λ, we vary s = 1/λ, which is the scale para-
meter and is proportional to the standard deviation of the 
Laplace prior. Lower values of s are more parsimonious, as 
are higher values of λ. For a fixed random seed of 10,000, 
the model in the example had a posterior mean s of 0.54, 
with a 5%–95% range of (0.32,0.77). The LOOIC was 103.6, 
with a parameter penalty of 9.8. The standard deviation of 
the LOOIC was about 13 for this and all the tested fits, and 
the standard deviation of the penalty was usually about 3.3. 
The testing found that the LOOIC improved with higher s up 
to a value of s = 0.14, and then it was flat for higher values 

of s. See Table 12 for the results. 
There were seven slope-change parameters in this 

model. Often, with more parameters, we see the LOOIC 
level off at some point although the parameter penalty 
keeps increasing for higher values of s. This result might not 
hold for the posterior mode or for classical LASSO. I prefer 
the lowest λ for any given LOOIC for the sake of general 
parsimony. No matter how high s is, parameters with values 
closer to zero still get the highest prior probability, so the 
sample sets might all have similar parameters in them, once 
s is high enough. I even more prefer to set a prior for s and 
let MCMC determine a posterior range for it. Here, that ac-
tually gives the lowest LOOIC, but only by about 1/40 of a 
standard deviation. 

The prior used in the examples is proportional to 1/s on 
a range of about (0.007,0.82), which is (‑5,‑1/5) for log s. I 
like a 1/x prior for a positive parameter, particularly if the 
prior is wide, as that prevents it from being biased upward 
when the top of the range is far larger than the parame-
ter should be. This prior is equivalent to a uniform prior on 
log x. It is not so different from a uniform prior when used 
on a small range, however. Large values of s can make con-
vergence more difficult for some models, so I usually try to 
avoid them. 
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