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Capital allocation is an essential task for risk pricing and performance measurement of 
insurance business lines. This paper provides a survey of existing capital allocation 
methods, including common approaches based on the gradients of risk measures and 
economic allocation arising from counterparty risk aversion. We implement all methods 
in two example settings: binomial losses and loss realizations from a catastrophe 
reinsurer. We assess stability based on sensitivity analysis with regard to losses. Our 
results show that capital allocations appear to be intrinsically (geometrically) related, 
although the stability varies considerably. We find stark differences between common and 
“economic” capital allocations. 
This paper was funded through Casualty Actuarial Society sponsored research on “Allocation 
of Costs of Holding Capital”. 

1. INTRODUCTION 

The question of how to allocate risk capital to different 
units or lines of business has generated considerable atten-
tion in the actuarial literature. This paper reviews the form 
and the intellectual foundation of a variety of methods and 
then compares their results in the context of a theoretical 
loss model and a specific real-world example. The goal is to 
offer insights on the similarities, differences, and stability 
of the different methods. 

We find considerable variation in the results from differ-
ent methods, although all of the allocations appear to be 
geometrically related. More precisely, depending on the ex-
ample, the allocations seem to constitute a lower-dimen-
sional manifold relative to the dimension of the allocation 
problem. Expected value (EV) allocations lie at one end of 
the frontier while extreme tail allocations are at the other. 
Furthermore, we also find significant differences in stabil-
ity. Small changes in the underlying data set can have dra-

matic effects on the allocation results associated with cer-
tain methods. In particular, some allocations generated by 
value-at-risk (VaR), as well as those generated by extreme 
tail risk measures, prove to be unstable due to their focus on 
a small number of sample outcomes (in the case of VaR, just 
one). 

There are various surveys on capital allocation tech-
niques and methods (Burkett, McIntyre, and Sonlin 2001; 
Albrecht 2004; Venter 2004; Bauer and Zanjani 2013). It is 
important to stress that, in this paper, we are not attempt-
ing to endorse or favor any particular method. While we 
have written elsewhere on the origins of “economic allo-
cations” from a theoretical perspective (Bauer and Zanjani 
2016, 2021), the goal here is to gain perspective on practical 
differences. To elaborate, theoretical differences between 
two methods are less concerning if, in practice, they pro-
duce similar answers. Moreover, a theoretically appealing 
method is of little use if, in practice, it is unstable. Thus, 
we view the comparison of different allocation methods as 
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a worthwhile endeavor to inform practice. 
This paper is organized as follows. We start in Section 

2 by reviewing the foundations of the capital allocation 
problem. In particular, we address the question of why—or, 
rather, under which conditions—the capital allocation 
problem is relevant, and what precisely we mean by a capital 
allocation. Then in Section 3, we provide details on how 
capital is allocated. We commence by discussing the most 
popular conventional allocation approach, the so-called 
Euler or gradient allocation principle, including its eco-
nomic underpinnings. However, we also review alternative 
approaches, including “distance minimizing” approaches, 
allocation by percentile layers, and economic allocations 
originating from counterparty risk aversion, and we discuss 
relationships between the methods. In Section 4, we com-
pare capital allocation methods. In Section 4.2, we present a 
pedagogical allocation exercise illustrating the connections 
between economic methods and conventional methods. In 
Section 4.3, we implement all allocation methods in the 
context of data provided from a catastrophe reinsurer: first 
we describe the data and the specifics of the approaches, 
and then we compare and contrast the resulting allocations, 
evaluate their effects on pricing, and test their stability. Fi-
nally, in Section 5, we offer our conclusions. 

2. THE FOUNDATIONS OF CAPITAL 
ALLOCATION 
2.1. WHY ALLOCATE CAPITAL? 

We must first establish why capital is allocated. The simple 
answer from the practitioner side is that allocation is a ne-
cessity for pricing and performance measurement. By allo-
cating capital costs to each business line, the firm can set 
the price in each line to cover capital costs and meet finan-
cial targets. To utilize an end-of-cycle performance man-
agement assessment tool like risk-adjusted return on capi-
tal (RAROC), a benchmark needs to be set at the beginning 
of the actuarial cycle using a capital allocation principle 
(Farr et al. 2008; Baer, Mehta, and Samandari 2011). When 
setting benchmarks for lines of business within a multiline 
firm, one must ensure that the benchmarks put in place are 
consistent with the firm’s financial targets, specifically the 
target return on equity (ROE). 

This seems logical at first glance, yet some of the acad-
emic literature has been skeptical. Phillips, Cummins, and 
Allen (1998) noted that a “financial” approach to pricing in-
surance in a multiline firm rendered capital allocation un-
necessary, a point reiterated by Sherris (2006). The financial 
approach relies on applying the usual arbitrage-free pric-
ing techniques in a complete market setting without fric-
tional costs. In such a setting, one simply pulls out a mar-
ket-consistent valuation measure to calculate the fair value 
of insurance liabilities. Capital affects this calculation in 
the sense that the amount of capital influences the extent 
to which insurance claims are actually paid in certain states 

of the world, but, so long as the actuary is correctly evalu-
ating the extent of claimant recoveries in various states of 
the world (including those where the insurer is defaulting), 
there is no need to apportion the capital across the various 
lines of insurance. 

Once frictional costs of capital are introduced, the situ-
ation changes, as seen in Froot and Stein (1998) and Bauer 
and Zanjani (2013). Frictions open up a gap between the 
expected profits produced by financial insurance prices and 
the targeted level of profits for the firm. In such a case, the 
gap becomes a cost that must be distributed back to busi-
ness lines, like overhead or any other common cost whose 
distribution to business lines is not immediately obvious. 

As a practical example, consider catastrophe reinsurers. 
Natural catastrophe risk is often argued to be “zero beta” in 
the sense of being essentially uncorrelated with broader fi-
nancial markets. If we accept this assessment, basic finan-
cial theory such as the capital asset pricing model would 
then imply that a market rate of return on capital exposed 
to such risk would be the risk-free rate. Yet, target ROEs at 
these firms are surely well in excess of the risk-free rate. 
The catastrophe reinsurer thus has the problem of allocat-
ing responsibility for hitting the target ROE back to its var-
ious business lines without any guidance from the standard 
arbitrage-free pricing models. 

Viewed in this light, “capital allocation” is really short-
hand for capital cost allocation." Capital itself, absent the 
segmentation of business lines into separate subsidiaries, is 
available for all lines to consume. A portion allocated to a 
specific line is not in any way segregated for that line’s ex-
clusive use. Hence, the real consequence of allocation lies in 
the assignment of responsibility for capital cost: a line allo-
cated more capital will have higher target prices. 

An important point, to which we shall return later, is 
the economic meaning of the allocation. Merton and Perold 
(1993) debunk the notion that allocations could be used to 
guide business decisions involving inframarginal or supra-
marginal changes to a risk portfolio (e.g., entering or exit-
ing a business line). The more common argument is that al-
location is a marginal concept—offering accurate guidance 
on infinitesimal changes to a portfolio. As we will see, many 
methods do indeed have a marginal interpretation, but the 
link to marginal cost is not always a strong one. 

2.2. CAPITAL ALLOCATION DEFINED 

We start by offering notation and defining capital alloca-
tion.1 Consider a one-period model with  business lines 
with loss realizations   modeled as square-
integrable random variables in an underlying probability 
space 2 At the beginning of the period, the insurer 
decides on a quantity of exposure in each business line and 
receives a corresponding premium   in re-
turn. The exposure is an indemnity parameter  so that 
the actual exposure to loss  is 

This subsection and the next borrow notation and approaches from Bauer and Zanjani (2013). 

“Lines” can refer to various notions, such as customers or groups of customers. 
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We assume that an increase in exposure shifts the distribu-
tion of the claim random variable so that the resulting dis-
tribution has first-order stochastic dominance over the for-
mer: 

For simplicity, we typically consider  to represent an in-
surance company’s quota share of a customer 's loss: 

Other specifications could be considered, but the specifica-
tion above implies that the claim distribution is homoge-
neous with respect to the choice of variable  The pro-
portional argument may be justified locally by pointing out 
the availability of proportional reinsurance or by alluding to 
the idea that claims are proportional in dollars. This sim-
plifies capital allocation, although it should be noted that 
insurance claim distributions are not always homogeneous 
(Mildenhall 2004), and the “adding up” property associated 
with a number of methods depends on homogeneity. Ex-
tensions to more general (nonlinear) contracts are possi-
ble when generalizing the setting (Frees 2017; Mildenhall 
2017). 

We denote company assets as  and capital as  where, 
to fix ideas, we adopt a common specification of the differ-
ence between the fair value of assets and the present value 
of claims. We denote by  the aggregate claims for the com-
pany, with the sum of the random claims over the sources 
adding up to the total claim: 

However, actual payments made amount to only 
because of the possibility of default. We can also decompose 
actual payments, whereby (as is typical in the literature) we 
assume equal priority in bankruptcy, so that the payment to 
loss  is 

Allocation is simply a division of the company’s capital 
across the  sources of risk, with  representing the cap-
ital per unit of exposure assigned to the th source. Of 
course, a full allocation requires that the individual 
amounts assigned to each of the lines add up to the total 
amount for the company: 

It is worth noting that the question of what to allocate is 
not necessarily straightforward. Are we to allocate the book 
value of equity? The market value of equity? In general, the 
answer to this question is going to be guided by the nature 
of costs faced by the firm. Even then, the costs may be diffi-
cult to define, as the decomposition of capital costs offered 
by Mango (2005) suggests. 

3. CAPITAL ALLOCATION TECHNIQUES 

Assuming we have answered the question of what to allo-
cate, the remaining question is how to do it. Unfortunately, 
the answer is not straightforward; there are a bewildering 
variety of peddlers in the capital allocation market. Mathe-
maticians bearing axioms urge us to adhere to their meth-
ods—failure to do so will result in some immutable law of 
nature being violated. Economists assure us that only their 
methods are optimal. Game theorists insist that only their 
solution concepts can be trusted. Practitioners wave off all 
of the foregoing as the ravings of ivory tower lunatics, all 
the while assuring us that only their methods are adapted 
to the real-world problems faced by insurance companies. 
Everyone has a pet method, perhaps one that has some in-
tuitive appeal or one that is perfectly adapted to some par-
ticular set of circumstances. 

Given such variety, it is not surprising that allocation 
methods defy easy categorization. Many do end up in es-
sentially the same place—the Euler or gradient method—a 
convergence noted by Urban and colleagues (2004) and Al-
brecht (2004). But others do not. In the following section, 
we attempt to give an overview of the primary approaches. 
We keep the focus on concepts and examples. Table 1 sum-
marizes the allocation examples, and Figure 1 shows their 
interrelationship in graphical form. 

3.1. THE EULER METHOD AND SOME DIFFERENT WAYS 
TO GET THERE 

Consider setting capitalization based on a differentiable 
risk measure  and further imagine allocating capi-
tal to line  based on 

This allocation is commonly referred to as the gradient or 
Euler allocation, the latter being a reference to Euler’s ho-
mogeneous function theorem. This theorem states that for 
every positive homogeneous function of degree 1 

—which is equivalent to 
requiring that the risk measure  be ho-
mogeneous—we automatically obtain the “adding up” 
property:  The basic Euler approach 

can be found in Schmock and Straumann (1999) and Tasche 
(2004), among others. 

The Euler or gradient allocation can also be implemented 
without requiring that  by normalizing 

One of the major advantages of the Euler allocation is that 
it is possible to directly calculate (approximative) alloca-
tions given an available economic capital framework that 
allows the derivation of  and 3 More specifically, we 
can approximate the derivative occurring in the allocation 

This is not to say that this task is at all simple. In fact, the computational complexity associated with evaluating economic capital pre-
sents a serious problem for financial institutions and frequently leads them to adopt second-best calculation techniques (Bauer, Reuss, 
and Singer 2012). However, the availability of a suitable model for the different risks within a company’s portfolio and their interplay 
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Figure 1. Overview of capital allocation methods 

rule by simple finite differences (although more advanced 
approaches may be used)—that is, 

where  is “small.” 
A number of different paths lead to the Euler allocation. 

Denault (2001) proposes a set of axioms that define a coher-
ent capital allocation principle when  His axioms 
require the following: 

Denault shows that the risk measure necessarily must be 
linear in order for a coherent allocation to exist. This result 
essentially echoes the findings of Merton and Perold (1993), 
but shows that allocation based on a linear risk measure 
constitutes an exception to their indictment of using allo-
cations to evaluate inframarginal or supramarginal changes 
to a portfolio. Linear risk measures are obviously of limited 
application, but Denault (2001) finds more useful results 
when analyzing marginal changes in the portfolio. In par-
ticular, he uses five axioms to define a “fuzzy” coherent al-
location principle that exists for any given coherent, differ-
entiable risk measure—and this allocation is given by the 

Euler principle applied to the supplied risk measure. 
Kalkbrener (2005) uses a different set of axioms: 

He finds that the unique allocation under these axioms is 
given by the Gâteaux derivative in the direction of the sub-
portfolio, which again collapses into the Euler allocation: 

Some common homogeneous risk measures used in this ax-
iomatic context are 

1. Adding up—The sum of allocations must be 
2. No undercut—Any subportfolio requires more capital 

on a stand-alone basis. 
3. Symmetry—If risk A and risk B yield the same contri-

bution to capital when added to any disjoint subport-
folio, their allocations must coincide. 

4. Riskless allocation—A deterministic risk receives zero 
allocation in excess of its mean (see also Panjer 2002). 

1. Linear aggregation—This combines axioms 1 and 4 of 
Denault. 

2. Diversification—This corresponds to axiom 2 of De-
nault. 

3. Continuity—Small changes to the portfolio should 
have only a small effect on the capital allocated to a 
subportfolio. 

• the standard deviation, derived from the standard de-
viation premium principle (Deprez and Gerber 1985); 

• the VaR; 
• the expected shortfall/tail VaR (TVaR); 
• the risk-adjusted TVaR (RTVaR) (Furman and Lands-

man 2006, and under a different name in Venter 
2010); 

• the exponential risk measure (Venter, Major, and 
Kreps 2006); and 

• the distortion risk measures (Denneberg 1990; Wang 
1996), including 

◦ proportional hazard transformation (Wang 

clearly is a necessity for the derivation of any coherent principle for allocating capital. 
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1995, 1998), 
◦ Wang transformation (Wang 2000), and 

◦ exponential transformation (McLeish and 
Reesor 2003). 
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Table 1. Implementation of allocation methods 

Allocation Risk Measure / Capital to Hold Allocation to Line : RMK Riskiness Leverage / Co-Measures 

CoVar 

VaR 

TVaR 

RTVaR 
 , , 

Exponential 

Distortion — 

Myers-Read 
 

Esscher — 

Kamps — 

D’Arcy — — 

Bodoff — 

Bauer-
Zanjani 

— 

• Proportional Hazard 

• Wang Transformation 

• Exponential Transformation 
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An alternative approach to the capital allocation prob-
lem is from the perspective of game theory. Lemaire (1984) 
and Mango (1998) both note the potential use of the Shap-
ley value, which rests on a different set of axioms, in solving 
allocation problems in insurance. The Shapley value (Shap-
ley 1953) is a solution concept for cooperative games that 
assigns each player a unique share of the cost. Denault 
(2001) formally applies this idea to the capital allocation 
problem, in particular by relying on the theory of coopera-
tive fuzzy games introduced by Aubin (1981). The key idea 
here is that the cost functional  of a cooperative game is 
defined via the risk measure : 

The problem then is to allocate shares of this “cost” to the 
players, with the set of valid solutions being defined as (see 
also Tsanakas and Barnett 2003) 

Thus, for allocations in this set, any (fractional) subport-
folio will feature an increase in aggregated per-unit costs, 
which connects to the usual solution concept in cooperative 
games requiring any solution to be robust to defections by 
subgroups of the players. The Aumann-Shapley solution is 

If the risk measure is subadditive, positively homogeneous, 
and differentiable, the solution boils down to the Euler 
method when loss distributions are homogeneous.4 

The Euler method is also recovered in a number of “eco-
nomic” approaches to capital allocation, where the risk 
measure is either embedded as a constraint in a profit-max-
imization problem (e.g., Meyers 2003 or Stoughton and 
Zechner 2007) or embedded in the preferences of policy-
holders (Zanjani 2002). In either case, the marginal cost 
of risk ends up being defined, in part, by the gradient of 
the risk measure. As illustration, consider the optimization 
problem adapted from Bauer and Zanjani (2016): 

subject to 

From the optimality conditions associated with this prob-
lem, assuming a nonexplosive solution exists, 

can be obtained at the optimal exposures and capital level. 
Hence, for the optimal portfolio, the risk-adjusted marginal 

return  for each exposure  is the same and equals the 

cost of a marginal unit of capital  More to the point, 
the right-hand side of Equation (5) allocates a portion of the 
marginal cost of capital to the th risk, an allocation that is 
obviously equivalent to the Euler allocation. In this sense, 
the Euler allocation is indeed “economic,” but it is impor-
tant to stress that any economic content flows from the im-
position of a risk measure constraint. 

This economic setup also recovers performance mea-
surement based on the Euler method. Fixing  the risk-
adjusted marginal return is the same at the optimal expo-
sures. Moving off the optimal values, if a source of risk has 
a higher-than-average performance (i.e., if in Equation (5) 
there is a positive sign), one can marginally increase expo-
sure  and the risk-adjusted performance of the entire 
portfolio  will increase. This property aligns with theorem 
4.4 in Tasche (2000), which states that the gradient alloca-
tion method is the only risk allocation method that is suit-
able for performance measurement. 

3.2. DISTANCE-MINIMIZING ALLOCATIONS 

Not all approaches lead to the Euler principle. Laeven and 
Goovaerts (2004), whose work was later extended by 
Dhaene, Goovaerts, and Kaas (2003); Zaks, Frostig, and 
Levikson (2006); Dhaene and colleagues (2012); and Zaks 
and Tsanakas (2014), derive allocations based on minimiz-
ing a measure of the deviations of losses from allocated cap-
ital. Specifically, Laeven and Goovaerts propose solving 

to identify an allocation, whereas Dhaene and colleagues 
(2012) consider 

where  is a (distance) measure and  are weighting ran-
dom variables with 

In the approach by Dhaene and colleagues (2012), certain 
choices for  and  can reproduce various allocation 
methods. For instance, for  and 
they arrive at weighted risk capital allocations 

 studied in detail by Furman and Zitikis 
(2008). Examples include the allocation based on the Ess-
cher transform and the premium principle by Kamps (1998). 
Other choices lead to other allocation principles, including 
several that can be derived from the application of the Euler 
principle, such as weighted TVaR (WTVaR). 

Aumann-Shapley values can also be used to cope with the problem of inhomogeneous loss distributions. In this case, Powers (2007) 
demonstrates that although the Euler principle will not apply, the Aumann-Shapley value can be used for the risk-allocation problem. 
Similarly, it may offer a solution if the underlying risk measure does not satisfy the homogeneity condition. For instance, Tsanakas (2009) 
shows how to allocate capital with convex risk measures, although the absence of homogeneity is shown to potentially produce an incen-
tive for infinite fragmentation of portfolios. The intuition for this rather undesirable feature is to include risk-aggregation penalties 
within inhomogeneous convex risk measures. 
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3.3. ALLOCATIONS BY CO-MEASURES AND THE RMK 
ALGORITHM 

Euler methods require calculation of gradients of risk mea-
sures, which sometimes can present a numerical challenge. 
An alternative approach is the Ruhm-Mango-Kreps (RMK) 
algorithm (Ruhm, Mango, and Total 2003; Kreps 2005), a 
popular approach of capital allocation in practice, partly 
due to its ease of implementation. According to Kreps 
(2005), it commences by defining 
as the total capital to support the company’s aggregate loss 

 where  is the mean (reserve) and  is the risk load. 
Then, the capital allocations  for risks  emanating 
from the asset or the liability side are defined as 

where  is the riskiness leverage, and “all” that one needs 
to do is to find the appropriate form of  This allocation 
method adds up by definition, and it scales with a currency 
change if  for a positive constant 

Different interpretations are possible, but the key advan-
tage is ease of implementation, since the method solely re-
lies on taking “weighted averages” (Ruhm 2013). 

Algorithm 3.1. RMK algorithm 

* We adjust Ruhm’s formula here to be in line 
with the allocation above. 

Of course, the RMK algorithm presents only the general 
framework. The crux lies in the determination of the risk-
iness leverage  Various examples are presented by Kreps 
(2005), some of which result in familiar allocation princi-
ples that can be alternatively derived by the gradient prin-
ciples. 

More generally, Venter (2004) and Venter, Major, and 
Kreps (2006) introduce co-measures. Specifically, they con-
sider the risk measure5 

where the  are linear functions. Then, they define the co-
measure as 

which satisfies  and thus serves as an al-
location. 

As Venter (2010) points out, even for one risk measure 
there may be different co-measures (i.e., the representation 
is not unique). Some of them yield representations that are 
equivalent to the gradient allocation, but this is not neces-
sarily the case. In Table 1, the last column lists the riskiness 
leverage / co-measures of some common allocation meth-
ods. We introduce two allocation approaches by directly re-
lying on their implementation via the RMK algorithm and 
co-measures. 

3.3.1. MYERS-READ APPROACH 

Myers and Read (2001) argue that, given complete markets, 
default risk can be measured by the default value, i.e., the 
premium the insurer would have to pay for guaranteeing its 
losses in the case of a default. Then, they propose that “sen-
sible” regulation will require companies to maintain the 
same default value per dollar of liabilities and effectively 
choose this latter ratio as their risk measure. 

More precisely, following Mildenhall (2004), the default 
value can be written as6 

and the company’s default-to-liability ratio is 

Myers and Read (2001) verify the adding-up property for 
—which again shows a relationship to the Euler principle. 
They continue to demonstrate that in order for the default 
value to remain the same as an exposure is expanded, it is 
necessary that 

which, in turn, yields 

This is similar to the allocation found by Venter, Major, and 
Kreps (2006), although they allocate assets rather than cap-
ital, so  does not occur in the first term. As indicated 

• Simulate possible outcomes by component 
and total. 

• Calculate EVs  by taking simple aver-
ages. 

• Select a risk measure on total company out-
comes and express the risk measure as a leverage 
factor. 

• Calculate risk-adjusted EVs  by 
taking “weighted averages.” 

• Allocate capital in proportion to risk, by* 

The definition from Venter (2010) allows for different conditions for the different s. 

In contrast to Myers and Read (2001), we ignore the asset side and possible adjustments in calculating the option value. 
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in their paper, it is possible to represent this allocation as 
a co-measure using   

 and 

3.3.2. D’ARCY ALLOCATION 

D’Arcy (2011) considers allocations by the RMK algorithm 
but identifies flexibility in choosing the riskiness leverage 
as its “greatest flaw.” To uniquely identify the “right” func-
tion, he proposes to use capital market concepts, particu-
larly cost of capital, to “reflect the actual cost of recapital-
izing the firm.” Specifically, he allows the riskiness leverage 
to depend on both the size of the loss realization and the 
type of shock leading to the loss (idiosyncratic, industry-
wide, or systemic). The riskiness leverage factor is the ratio 
of the cost of capital divided by the normal cost of capital, 
where the realized cost of capital, in addition to systemic 
factors, depends additively on the ratio of aggregate losses 
to the firm’s actual capital: 

It is important to note that D’Arcy (2011) only proposes the 
RMK algorithm only for the “consumptive” aspect of capi-
tal allocation, whereas he also includes a “nonconsumptive” 
allocation in the spirit of Mango (2005) (see Section 3.4). 

3.4. CONSUMPTIVE VERSUS NONCONSUMPTIVE 
CAPITAL 

Mango (2005) argues that capital costs consist of two parts. 
An insurer’s capital stock can be depleted if a loss realiza-
tion exceeds the reserves for a certain segment or line, or 
when reserves are increased. Mango refers to this part as a 
consumptive use of capital since in this case, funds are trans-
ferred from the (shared) capital account to the (segment-
specific) reserve account. The second, nonconsumptive part 
arises from a “capacity occupation cost” that compensates 
the firm for preclusion of other opportunities. It is thought 
to originate from rating-agency requirements in the sense 
that taking on a certain liability depletes the underwriting 
capacity. 

The importance of this distinction for our purposes is 
that it complicates practice in cases where the two sources 
of costs require different approaches to allocation. For ex-
ample, D’Arcy (2011) follows Mango’s suggestion by first al-
locating consumptive capital via the RMK algorithm, where 
the riskiness leverage, or capital call cost factor,  is as-
sociated with the cost of capital (see also Bear 2006 and 
D’Arcy 2011). He then allocates capital according to regula-
tory rules, and the final allocation ends up as an average of 
the two allocations. Thus, the two different motivations for 
holding capital are reflected in a hybridization of allocation 
methods. 

3.5. CAPITAL ALLOCATION BY PERCENTILE LAYER 

Bodoff (2009) argues that allocations according to VaR or 
to tail risk measures do not consider loss realizations at 
smaller percentiles, even though the firm’s capital obvi-
ously supports these loss levels as well. Thus, in order to 
allocate, he advocates considering all loss layers up to the 

considered confidence level. His approach considers allo-
cating capital to loss events, but since we are interested in 
allocating capital to lines, we follow the description from 
Venter (2010). 

Assume the capital  is determined by some given risk 
measure. For instance, VaR is used in Bodoff (2009). Then, 
the allocation for the layer of capital  is 

Going over all layers of capital, we obtain the allocation 

where, obviously, 

As Venter (2010) points out, even if  is set equal to a risk 
measure and allowed to change with the volume of the writ-
ings, the resulting allocation does not collapse to the gradi-
ent allocation in any known cases. 

When implementing the approach based on a sample of 
size  obviously it is necessary to approximate the integral 
formulation above. When we base it on  and use the 
simple empirical quantile for its estimation, we can set 

where we set  Since the conditional expectations 
within the sum have to be also approximated by taking av-
erages, the implementation in a spreadsheet may be cum-
bersome (or even infeasible) for large samples. 

3.6. ECONOMIC COUNTERPARTY ALLOCATION 

Sections 3.1 to 3.5 outline so-called 'conventional capital 
allocation methods. While conventional methods vary in 
technique, they all consider capital allocation a technical 
problem but do not contemplate the motivation for holding 
capital in the first place. In contrast, Bauer and Zanjani 
(2016) argue that the demand side’s risk preferences would 
have an impact on the optimal capital and allocation deci-
sion. More precisely, Bauer and Zanjani introduce a theo-
retical framework of capital allocation that is derived from 
the insurer’s profit maximization subject to counterparty 
risk aversion. The concept is fundamentally different from 
that of Equation (4), where the premium and risk measure 
are exogenously determined. Here, the premium is a choice 
variable for the insurer, subject to a participation constraint 
for the counterparty. In particular, there is no risk measure 
to be imposed in the first place, but an endogenous expres-
sion for the risk measure can be derived from the allocation 
rule. In the remainder of the paper, we will refer to this al-
location as the Bauer-Zanjani allocation. 

The idea of incorporating a demand function is also 
raised by Kliger and Levikson (1998) and later on by Zaks, 
Frostig, and Levikson (2008), where the default probability 
is considered. To elaborate on the setup, it is assumed that 
we have a group of  consumers/policyholders or  busi-
ness lines. Each consumer or line has wealth  and is sus-
ceptible to a loss  which is random. Each consumer is 
risk averse by default, and has utility function  and ex-
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pected utility  Each consumer can purchase insurance to 
recover a portion   of the loss at premium rate 

 Both  and  are chosen by the insurer. The insurer 
will collect the premium up front and deliver a total of 

 for indemnity payments. The expected pay-
back to each consumer is 

 with the latter amount trig-
gered by the insurer’s default or when its assets  are less 
than the total indemnity payment  The insurer then solves 
the following one-period optimization problem: 

This is subject to participation constraints for each con-
sumer: 

The solution suggests that an allocation weight for each 
consumer/policyholder is 

The supporting risk measure takes the form 

where the measure  is given by its likelihood ratio: 

It turns out that this risk measure does not satisfy the com-
mon axioms of coherence and convexity. It is important 
to note that within this framework, the allocation results 
are determined through optimization. In particular, the ex-
posure parameters  are not fixed but determined in the 
optimization procedure—unlike in the conventional ap-
proaches. 

3.7. SOME CONNECTIONS BETWEEN THE ALLOCATIONS 

Table 1 presents the implementation of all allocation meth-
ods mentioned in the previous sections. As a side note, 
there are several connections between the various alloca-
tion methods beyond what has been pointed out so far in 
this section: 

Moreover, Figure 1 graphically illustrates the relation-
ship between various methods discussed in this section. In 
the next section, we compare the methods based on two ex-
ample settings. 

4. COMPARISON OF CAPITAL ALLOCATION 
METHODS 

In this section, we analyze the allocation problems and 
methods discussed in the previous sections in the context 
of (1) a binomial loss model and (2) real-world catastrophe 
insurance losses. Specifically for the second context, we 
gained access to (scaled) simulated loss data for a global 
catastrophe reinsurance company. 

We use the binomial loss model as a pedagogical tool to 
compare allocations in a lower dimension and to gain an 
understanding of allocation characteristics that may also be 
found in higher dimensions. With regard to the second con-
text, we believe our data offers a degree of realism missing 
from previous contributions in which proposed allocation 
methods are studied only in the context of stylized exam-
ples or based on normal distributions (which is particularly 
limiting, as discussed in Section 3.7). 

In Section 4.1, we start by outlining the allocation ap-
proaches. In the next two sections, 4.2 and 4.3, we present 
the implementation in the two settings. In Section 4.3, we 
also present a pricing exercise to show the impact of allo-
cations and a sensitivity analysis to examine the stability of 
allocations. 

4.1. ALLOCATION APPROACHES 

For allocation techniques in both examples, we consider the 
following approaches: 

• For elliptical distributions, the Euler allocation yields 
to the same relative amounts of capital allocated to 
each line, irrespective of which (homogeneous) risk 
measure we use (corollary 6.27, McNeil, Frey, and Em-
brechts 2015). 

• Asimit and collegues (2012) show that risk capital al-
location based on TVaR is asymptotically propor-
tional to the corresponding VaR risk measure as the 
confidence level goes to 1. 

• Allocation by EVs 
• A covariance allocation (Here we choose the parame-

ter  2 due to the similarities of the supporting risk 
measure to a quantile for a normal distribution, where 
2—or, rather, 1.96 for a two-sided confidence interval 
of 95%—is a common choice.) 

• TVaR (expected shortfall) allocations for confidence 
levels  75%, 90%, 95%, and 99% 

• VaR-based allocations for confidence levels  95% 
and 99% (In the real-world context, in addition to 
estimating the allocations based on splitting up the 
corresponding empirical quantile into its loss com-
ponents, labeled “simple,” we consider an estimation 
that takes into account the surrounding realizations 
by imposing a bell curve centered at the quantile with 
a standard deviation of three, labeled “bell.” In both 
examples, we also apply the kernel estimator method 
found in Tasche 2009 for computation of VaR and its 
allocations.) 

• Exponential allocations for parameters  0.10, 0.25, 
and 1.00 

• Allocations based on a distortion risk measure, in par-
ticular the proportional hazard transformation, Wang 
transformation, and exponential transformation (For 
the proportional hazard transformation parameters, 
we use  0.60 ,  0.80 , and  0.95, where we 
follow Wang 1998 indicating that a typical transfor-
mation parameter ranges from 0.5 to 1.0, depend-
ing on the ambiguity regarding the best-estimate loss 
distribution. For the Wang transformation parame-
ters, we use  0.25,  0.50, and  0.75, where 
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4.2. THE CASE OF HETEROGENEOUS BERNOULLI LOSSES 

We consider individuals that face Bernoulli-distributed 
losses to belong to three groups. More precisely, we assume 

We demonstrate results using groups of 5 consumers 
 and groups of 100 consumers 

For conventional allocation, we consider allocation of 
capital to three groups of consumers and assume full ex-
posure in all groups. Therefore, the total loss indemnity 
in each group is  where  and 
the total indemnity of the company is 
The computation of expectation, standard deviation, VaR, 
TVaR, and other moments of  are trivial and those statis-
tics are used to calculate allocation weights. The results are 
listed in Table 2. 

For the Bauer-Zanjani allocation, we assume that all 
groups have the same constant absolute risk aversion 
(CARA) preferences and absolute risk aversion parameters 

 and we solve the allocation problem us-

ing  from 0.1 to 2.0. It is well known that with CARA 
preferences, initial wealth is irrelevant. We impose a fric-
tional cost of  We optimize the objective function 
of Equation (8), obtain the parameters, and use Equation 
(10) in Appendix A to obtain the allocation weights. The op-
timization and allocation results are shown in Table 7. 

Figure 2 provides a direct comparison of the different al-
location methods (except for exponential c = 1). More pre-
cisely, since we have three different groups and allocation 
percentages  add up to 1, we can depict allocations 
by two numbers. We choose the allocation percentages for 
Groups 1 and 3, and then, of course, the allocation to Group 
2 can be calculated as the difference between their sum and 
1. 

Surprisingly, all methods lie along a line that shows a 
trade-off between allocating more to Group 3, which has 
the biggest loss size, and allocating more to Group 1, which 
has the smallest loss size. We observe that the tail-focused 
allocations such as Myers-Read lie on one extreme end and 
allocate the most to Group 3, while the EV allocation lies 
on the other extreme end and allocates the least to Group 3. 
Methods with distortion risk measures and weighted distri-
bution transformations result in allocations closer to those 
of the EV method. The VaR, TVaR, and RTVaR methods are 
in between, with RTVaR (more tail focused) allocating more 
to Group 3, followed by TVaR and VaR. In the case of 100 
consumers per group, the trade-off of allocation weight be-
tween Group 1 and Group 3 happens in a much smaller 
range compared with the case of 5 consumers per group. 
This is likely due to the diversification effect of 100 con-
sumers and the fact that binomial risk is not a tail-focused 
loss distribution. Now, Group 3 is relatively less risky and 
therefore requires relatively less capital support. The 
weights of capital allocation shift from Group 3 to Groups 1 
and 2. 

The Bauer-Zanjani allocations also adhere to the same 
relationship, where a higher risk-aversion parameter 
pushes toward the tail risk measures—e.g., BZ-2.0 (the 
Bauer-Zanjani allocation with  resembles the TVaR 
95% allocation (seen in Figure 2a). For smaller risk aversion, 
the allocation is closer to the allocations focusing on the 
whole distribution—e.g., BZ-0.1 (the Bauer-Zanjani alloca-
tion with  resembles the allocations of Bodoff, 
Wang transformation with large  proportional hazard with 
small  and Kamps (seen in Figure 2b). 

Overall, despite the variety of capital allocation methods 
proposed, it appears that they produce rather similar re-
sults; their differences are explained by a single parameter 
that roughly corresponds to how much the tail scenarios are 
emphasized. 

4.3. CATASTROPHE REINSURANCE LOSSES 

For this application, we begin by describing in detail the 
data and the approach to aggregation in Section 4.3.1. In 
particular, for our analyses, we limit the presentation to an 
aggregation to four lines only in order to facilitate inter-
pretation of the results. Here, we follow Bauer and Zanjani 
(2021), where the same data and aggregations are used. We 
then compare allocation methods in Section 4.3.2. Finally, 
we consider their stability in Section 4.3.4. 

we follow Wang 2012 indicating that a typical trans-
formation parameters in the reinsurance domain 
range between 0.50 and 0.77, whereas 0.25 is a typical 
assumption for long-termed Sharpe ratios in the fi-
nancial market. For the exponential transformation, 
we use parameters  0.50,  0.75, and  1.00.) 

• Myers-Read allocations for different capital levels 
(Section 3.3.1) (In particular, we choose capital equal 
to the 99.94% quantile, which roughly depends on 
capital levels to support an AM Best AA+ rating; three 
times the premium, which is roughly consistent with 
National Association of Insurance Commissioners ag-
gregate levels; and the 99% VaR just for comparison 
purposes.) 

• Weighted/transformation-based allocations based on 
the Esscher and Kamps transformation (Here we 
choose transformation parameters such that a nonex-
plosive evaluation is possible, but sufficiently differ-
ent from the EV allocation, which results in 

• The D’Arcy (2011) implementation of the RMK algo-
rithm (Section 3.3.2), where we rely on the same 
(first) two capital levels as for the Myers-Read alloca-
tion 

• Allocations based on the percentile layer (Bodoff in 
Section 3.5), where we allocate the 90%, 95%, and 
99% VaR 

• RTVaR allocations with  75%, 90%, and 95%, and 
 (as with the covariance allocation) 

• Allocation on the (simple) average of the four consid-
ered TVaRs 

• Bauer-Zanjani allocations (Since their approach relies 
on the solution of an optimization problem, we need 
to specify the necessary ingredients. We provide de-
tails on the solution within both settings in the ap-
pendices.) 

•  groups of identical consumers with the same 
probability of loss, ; and 

• differing sizes of loss among groups, with 
 and 
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Table 2. Conventional allocation results, heterogeneous Bernoulli case 

N = 5 N = 100 

Allocation Group 1 Group 2 Group 3 Sum RiskMeas Group 1 Group 2 Group 3 Sum RiskMeas 

EV 0.5000 1.0000 1.5000 3.0000 3.0000 10.0000 20.0000 30.0000 60.0000 60.0000 

16.67% 33.33% 50.00% 100.00% 16.67% 33.33% 50.00% 100.00% 

Std. Dev. 0.8586 2.4343 4.7271 8.0200 8.0200 11.6036 26.4143 44.4321 82.4499 82.4499 

beta = 2.0 10.71% 30.35% 58.94% 100.00% 14.07% 32.04% 53.89% 100.00% 

Std. Dev. 0.9482 2.7928 5.5339 9.2750 9.2750 12.0045 28.0178 48.0401 88.0624 88.0624 

beta = 2.5 10.22% 30.11% 59.66% 100.00% 13.63% 31.82% 54.55% 100.00% 

VaR 95% 0.6611 2.4447 4.8942 8.0000 8.0000 11.2838 25.3215 42.3947 79.0000 79.0000 

8.26% 30.56% 61.18% 100.00% 14.28% 32.05% 53.66% 100.00% 

VaR 95% 0.6551 2.4243 4.9164 7.9958 7.9958 11.2931 25.3373 42.1270 78.7574 78.7574 

(kernel) 8.19% 30.32% 61.49% 100% 14.34% 32.17% 53.49% 100% 

VaR 99% 0.8780 2.9425 6.1795 10.0000 10.0000 11.8136 27.7204 48.4660 88.0000 88.0000 

8.78% 29.42% 61.80% 100.00% 13.42% 31.50% 55.08% 100.00% 

VaR 99% 1.0040 2.6978 6.2916 9.9933 9.9933 11.5605 26.7791 48.2479 86.5875 86.5875 

(kernel) 10.05% 27.00% 62.96% 100% 13.35% 30.93% 55.72% 100% 

TVaR 75% 0.6656 2.0093 3.7754 6.4502 6.4502 10.9593 23.9185 38.9945 73.8723 73.8723 

10.32% 31.15% 58.53% 100.00% 14.84% 32.38% 52.79% 100.00% 

TVaR 90% 0.7582 2.0146 4.5103 7.2832 7.2832 11.3611 25.6802 43.3224 80.3636 80.3636 

10.41% 27.66% 61.93% 100.00% 14.14% 31.95% 53.91% 100.00% 

TVaR 95% 0.7810 2.5699 5.6869 9.0378 9.0378 11.5668 26.6035 45.6407 83.8109 83.8109 

8.64% 28.43% 62.92% 100.00% 13.80% 31.74% 54.46% 100.00% 

TVaR 99% 0.8953 3.0652 6.9330 10.8935 10.8935 12.0314 28.7385 51.1152 91.8851 91.8851 

8.22% 28.14% 63.64% 100.00% 13.09% 31.28% 55.63% 100.00% 

Avg. TVaR 0.7750 2.4148 5.2264 8.4162 8.4162 11.4797 26.2352 44.7682 82.4830 82.4830 

9.40% 28.85% 61.76% 100.00% 13.97% 31.84% 54.20% 100.00% 

Exponential 0.5714 1.1775 1.8195 3.5684 3.5684 11.0702 22.1737 33.3105 66.5544 66.5544 

c = 0.10 16.01% 33.00% 50.99% 100.00% 16.63% 33.32% 50.05% 100.00% 

Exp. Euler 0.5445 1.1633 1.8607 3.5684 3.5684 11.0458 22.1614 33.3472 66.5544 66.5544 

c = 0.10 15.26% 32.60% 52.14% 100.00% 16.60% 33.30% 50.11% 100.00% 
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N = 5 N = 100 

Allocation Group 1 Group 2 Group 3 Sum RiskMeas Group 1 Group 2 Group 3 Sum RiskMeas 

Exponential 0.7080 1.5248 2.4611 4.6939 4.6939 12.9026 25.9022 38.9990 77.8038 77.8038 

c = 0.25 15.08% 32.48% 52.43% 100.00% 16.58% 33.29% 50.12% 100.00% 

Exp. Euler 0.6026 1.4657 2.6257 4.6939 4.6939 12.8212 25.8612 39.1214 77.8038 77.8038 

c = 0.25 12.84% 31.22% 55.94% 100.00% 16.48% 33.24% 50.28% 100.00% 

Exponential 2.8319 7.5058 14.6796 25.0172 25.0172 28.0861 57.0189 86.8155 171.9204 171.9204 

c = 1.00 11.32% 30.00% 58.68% 100.00% 16.34% 33.17% 50.50% 100.00% 

Exp. Euler -1.6958 4.5706 22.1425 25.0172 25.0172 26.9171 56.4215 88.5818 171.9204 171.9204 

c = 1.00 -6.78% 18.27% 88.51% 100.00% 15.66% 32.82% 51.52% 100.00% 

Prop. Hazard 0.6464 1.5479 2.8057 5.0000 5.0000 10.6292 22.1503 34.6691 67.4486 67.4486 

a = 0.60 12.93% 30.96% 56.11% 100.00% 15.76% 32.84% 51.40% 100.00% 

Prop. Hazard 0.5599 1.2152 1.9970 3.7722 3.7722 10.2614 20.8836 31.8977 63.0427 63.0427 

a = 0.80 14.84% 32.22% 52.94% 100.00% 16.28% 33.13% 50.60% 100.00% 

Prop. Hazard 0.5133 1.0467 1.6054 3.1653 3.1653 10.0584 20.1962 30.4187 60.6732 60.6732 

a = 0.95 16.22% 33.07% 50.72% 100.00% 16.58% 33.29% 50.14% 100.00% 

Wang Trans. 0.5713 1.2297 1.9857 3.7868 3.7868 10.3123 21.0328 32.1697 63.5147 63.5147 

lambda = 0.25 15.09% 32.47% 52.44% 100.00% 16.24% 33.11% 50.65% 100.00% 

Wang Trans. 0.6428 1.4808 2.5548 4.6784 4.6784 10.6248 22.0840 34.4158 67.1245 67.1245 

lambda = 0.50 13.74% 31.65% 54.61% 100.00% 15.83% 32.90% 51.27% 100.00% 

Wang Trans. 0.7148 1.7523 3.2058 5.6729 5.6729 10.9376 23.1536 36.7382 70.8294 70.8294 

lambda = 0.75 12.60% 30.89% 56.51% 100.00% 15.44% 32.69% 51.87% 100.00% 

Exp. Trans. 0.6509 1.5006 2.5697 4.7212 4.7212 10.6667 22.2114 34.6569 67.5350 67.5350 

c = 0.50 13.79% 31.78% 54.43% 100.00% 15.79% 32.89% 51.32% 100.00% 

Exp. Trans. 0.6039 1.3380 2.2082 4.1502 4.1502 10.4578 21.5132 33.1752 65.1462 65.1462 

c = 0.75 14.55% 32.24% 53.21% 100.00% 16.05% 33.02% 50.92% 100.00% 

Exp. Trans. 0.5789 1.2540 2.0265 3.8595 3.8595 10.3471 21.1452 32.3985 63.8907 63.8907 

c = 1.00 15.00% 32.49% 52.51% 100.00% 16.19% 33.10% 50.71% 100.00% 

Myers-Read 0.2463 1.7674 4.9863 7.0000 7.0000 7.0919 35.9902 96.9179 140.0000 140.0000 

a = 10 3.52% 25.25% 71.23% 100.00% 5.07% 25.71% 69.23% 100.00% a = 200 

Myers-Read 0.1080 1.2239 3.6681 5.0000 5.0000 5.2340 25.8589 68.9070 100.0000 100.0000 
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N = 5 N = 100 

Allocation Group 1 Group 2 Group 3 Sum RiskMeas Group 1 Group 2 Group 3 Sum RiskMeas 

a = 8 2.16% 24.48% 73.36% 100.00% 5.23% 25.86% 68.91% 100.00% a = 160 

Esscher 0.5468 1.1949 1.9563 3.6981 3.6981 10.9367 23.8989 39.1269 73.9625 73.9625 

t = 0.10 14.79% 32.31% 52.90% 100.00% 14.79% 32.31% 52.90% 100.00% 

Kamps 0.6391 1.5347 2.6560 4.8299 4.8299 10.0039 20.0149 30.0322 60.0510 60.0510 

t = 0.10 13.23% 31.78% 54.99% 100.00% 16.66% 33.33% 50.01% 100.00% 

Esscher 0.5045 1.0181 1.5410 3.0637 3.0637 10.0904 20.3629 30.8198 61.2730 61.2730 

t = 0.01 16.47% 33.23% 50.30% 100.00% 16.47% 33.23% 50.30% 100.00% 

Kamps 0.6487 1.5926 2.8280 5.0694 5.0694 10.1106 20.4405 30.9872 61.5382 61.5382 

t = 0.01 12.80% 31.42% 55.79% 100.00% 16.43% 33.22% 50.35% 100.00% 

Esscher 0.5005 1.0018 1.5041 3.0063 3.0063 10.0090 20.0360 30.0811 60.1261 60.1261 

t = 0.001 16.65% 33.32% 50.03% 100.00% 16.65% 33.32% 50.03% 100.00% 

Kamps 0.6499 1.5993 2.8478 5.0969 5.0969 10.1456 20.5823 31.3097 62.0377 62.0377 

t = 0.001 12.75% 31.38% 55.87% 100.00% 16.35% 33.18% 50.47% 100.00% 

D’Arcy 0.5073 1.0380 1.6067 3.1519 3.1519 10.0000 20.0000 30.0000 60.0000 60.0000 

a = 10 16.09% 32.93% 50.98% 100.00% 16.67% 33.33% 50.00% 100.00% a = 200 

D’Arcy 0.5312 1.1442 1.9093 3.5847 3.5847 10.0000 20.0000 30.0000 60.0000 60.0000 

a = 8 14.82% 31.92% 53.26% 100.00% 16.67% 33.33% 50.00% 100.00% a = 160 

Bodoff 90% 0.9016 1.9442 3.1542 6.0000 6.0000 12.2744 24.8835 37.8421 75.0000 75.0000 

15.03% 32.40% 52.57% 100.00% 16.37% 33.18% 50.46% 100.00% 

Bodoff 95% 1.0894 2.5262 4.3844 8.0000 8.0000 12.8325 26.1570 40.0105 79.0000 79.0000 

13.62% 31.58% 54.80% 100.00% 16.24% 33.11% 50.65% 100.00% 

Bodoff 99% 1.2622 3.0769 5.6610 10.0000 10.0000 14.0403 28.9915 44.9682 88.0000 88.0000 

12.62% 30.77% 56.61% 100.00% 15.95% 32.94% 51.10% 100.00% 

RTVaR 95% 0.9740 3.1442 7.6200 11.7382 11.7382 12.1151 29.1225 52.0975 93.3352 93.3352 

8.30% 26.79% 64.92% 100.00% 12.98% 31.20% 55.82% 100.00% 

RTVaR 99% 0.9909 3.5364 8.7626 13.2899 13.2899 12.4783 30.8496 56.6560 99.9838 99.9838 

7.46% 26.61% 65.93% 100.00% 12.48% 30.85% 56.67% 100.00% 
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Figure 2. Comparison of allocations, heterogeneous Bernoulli losses, groups of 5 consumers—(a) and (b) are 
details of main graph 

4.3.1. DESCRIPTION OF THE DATA 

The data is supplied by a catastrophe reinsurance company 
and it has been scaled. We are given 50,000 joint loss real-
izations for 24 distinct lines differing by peril and geograph-
ical region. Figure 3 provides a histogram of the aggregate 
loss distribution, and Table 3 lists the lines and provides 
some descriptive statistics about each line. The largest lines 
for our reinsurer (by premiums and expected losses) are 

“US Hurricane,” “N. American EQ West” (North American 
Earthquake West), and “ExTropical Cyclone” (Extratropical 
Cyclone). The expected aggregate loss is $187,819,998 with 
a standard deviation of $162,901,154, and the aggregate 
premium income is $346,137,808.7 

We consider an aggregation to four lines, with line num-
bers listed in the column “Agg,” where we lump together 
all lines by perils. In particular, we can think of Line 1 as 
“earthquake,” Line 2 as “storm and flood,” Line 3 as “fire 

Note that the reported premiums may include premium refunds and other adjustments, so they should be interpreted with care. 7 
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Table 3. Descriptive statistics of all 24 lines 

Line Premiums Expected Loss Standard Deviation Agg. 

N. American EQ East 6,824,790.67 4,175,221.76 26,321,685.65 1 

N. American EQ West 31,222,440.54 13,927,357.33 47,198,747.52 1 

S. American EQ 471,810.50 215,642.22 915,540.16 1 

Australia EQ 1,861,157.54 1,712,765.11 13,637,692.79 1 

Europe EQ 2,198,888.30 1,729,224.02 5,947,164.14 1 

Israel EQ 642,476.65 270,557.81 3,234,795.57 1 

NZ EQ 2,901,010.54 1,111,430.78 9,860,005.28 1 

Turkey EQ 214,089.04 203,495.77 1,505,019.84 1 

N. American Severe Storm 16,988,195.98 13,879,861.84 15,742,997.51 2 

US Hurricane 186,124,742.31 94,652,100.36 131,791,737.41 2 

US Winterstorm 2,144,034.55 1,967,700.56 2,611,669.54 2 

Australia Storm 124,632.81 88,108.80 622,194.10 2 

Europe Flood 536,507.77 598,660.08 2,092,739.85 2 

ExTropical Cyclone 37,033,667.38 23,602,490.43 65,121,405.35 2 

UK Flood 377,922.95 252,833.64 2,221,965.76 2 

US Brushfire 12,526,132.95 8,772,497.86 24,016,196.20 3 

Australian Terror 2,945,767.58 1,729,874.98 11,829,262.37 4 

CBNR Only 1,995,606.55 891,617.77 2,453,327.70 4 

Certified Terror x CBNR 3,961,059.67 2,099,602.62 2,975,452.18 4 

Domestic Macro Terror 648,938.81 374,808.73 1,316,650.55 4 

Europe Terror 4,512,221.99 2,431,694.65 8,859,402.41 4 

Noncertified Terror 2,669,239.84 624,652.88 1,138,937.44 4 

Casualty 5,745,278.75 2,622,161.64 1,651,774.25 4 

N. American Crop 21,467,194.16 9,885,636.27 18,869,901.33 3 

and crop,” and Line 4 as “terror and casualty.” In order to 
keep the results comprehensible, we limit the exposition to 
this four-line aggregation level. Table 4 provides descrip-
tive statistics for four aggregated lines. Figure 4 shows his-
tograms for each of these four lines. 

We notice that Line 1, the “earthquake” distribution, is 
concentrated at low loss levels with only relatively few re-
alizations exceeding $50 million (the 99% VaR only slightly 
exceeds $300 million). However, the distribution depicts 
relatively fat tails with a maximum loss realization of only 
slightly under $1 billion. The (aggregated) premium for this 
line is $46,336,664 with an expected loss of $23,345,695. 

“Storm and flood” (Line 2) is by far the largest line, in 
terms of both premiums ($243,329,704) and expected losses 
($135,041,756). The distribution is concentrated around 
loss realizations between $25 and $500 million, though the 
maximum loss in our 50,000 realizations is almost four 
times that size. The 99% VaR is approximately $700 million. 

In comparison, the “fire and crop” (Line 3) and “terror 
and casualty” (Line 4) lines are small with aggregated pre-
miums (expected loss) of about $34 ($19) million and $22.5 
($11) million, respectively. The maximal realizations are 
around $500 million for “fire and crop” (99% VaR = 
$163,581,546) and around $190 million for “terror and ca-
sualty” (99% VaR = $103,201,866). We consider the same al-
location approaches outlined in Section 4.1. For the Bauer-

Figure 3. Histogram of aggregate loss from a 
catastrophe reinsurance company 

Zanjani allocations, we again consider CARA preferences 
with different absolute risk aversion levels. The results of 
the optimization procedure are provided in Table 8. For de-
tails on the implementation procedure, refer to Appendix A. 
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Table 4. Descriptive statistics of four aggregated lines 

Line 1 Line 2 Line 3 Line 4 

Mean 23,345,695 135,041,756 18,658,134 10,774,413 

Standard Deviation 56,799,346 144,548,440 30,581,084 15,906,141 

Skewness 7.396 3.318 6.197 4.419 

Kurtosis 69.092 14.064 51.180 22.981 

VaR 95% 83,795,329 437,519,498 59,269,092 39,358,369 

VaR 99% 309,169,458 773,511,391 163,581,546 103,201,866 

TVaR 95% 218,027,658 642,813,055 126,597,548 69,904,592 

TVaR 99% 474,121,370 938,919,861 243,805,003 112,988,193 

Figure 4. Histograms of four aggregated lines from a catastrophe reinsurance company 

4.3.2. COMPARISONS FOR THE UNMODIFIED PORTFOLIO 

Table 5 presents conventional allocation results for the (un-
modified) portfolio of the company. Here, for each alloca-
tion method, we list the capital levels for each line, their 

sum, and the risk measure evaluated for the aggregate loss 
distributions. Obviously, the last two numbers should co-
incide—which can serve as a simple check for the calcula-
tions. 
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Table 5. Conventional allocation results, catastrophe reinsurance case 

Allocation Line 1 Line 2 Line 3 Line 4 Sum Risk Meas. 

EV 23,345,695 135,041,756 18,658,134 10,774,413 187,819,998 187,819,998 

12.43% 71.90% 9.93% 5.74% 100% 

CovWBeta 62,292,648 398,599,625 38,938,608 13,791,425 513,622,306 513,622,306 

12.13% 77.61% 7.58% 2.69% 100% 

TVaR 75% 51,212,126 301,490,365 34,960,054 13,571,979 401,234,524 401,234,524 

12.76% 75.14% 8.71% 3.38% 100% 

TVaR 90% 72,975,560 462,489,152 42,432,578 12,350,749 590,248,038 590,248,038 

12.36% 78.36% 7.19% 2.09% 100% 

TVaR 95% 85,607,782 596,451,028 44,523,108 11,979,729 738,561,647 738,561,647 

11.59% 80.76% 6.03% 1.62% 100% 

TVaR 99% 106,293,324 869,605,928 58,168,596 11,294,985 1,045,362,832 1,045,362,832 

10.17% 83.19% 5.56% 1.08% 100% 

Avg. TVaR 79,022,198 557,509,118 45,021,084 12,299,361 693,851,760 693,851,760 

11.39% 80.35% 6.49% 1.77% 100% 

VaR 95% (simple) 9,776,274 330,811,906 173,984,700 14,118,944 528,691,824 528,691,824 

1.85% 62.57% 32.91% 2.67% 100% 

VaR 95% (bell) 62,367,597 404,259,189 51,869,109 10,157,414 528,653,309 528,653,309 

11.80% 76.47% 9.81% 1.92% 100% 

VaR 95% (kernel) 77,808,614 394,955,090 41,475,998 12,509,457 526,749,159 526,749,159 

14.77% 74.98% 7.87% 2.37% 100% 

VaR 95% (kernel 2) 76,988,324 397,475,814 40,744,181 12,852,171 528,060,490 528,060,490 

14.77% 74.98% 7.87% 2.37% 100% 

VaR 95% (kernel 3) 75215197 400037081 40076455 12890064 528218797 528218797 

14.24% 75.73% 7.59% 2.44% 100% 

VaR 99% (simple) 7,170,815 816,870,497 39,256,266 4,060,778 867,358,356 867,358,356 

0.83% 94.18% 4.53% 0.47% 100% 

VaR 99% (bell) 40,819,623 780,226,792 29,835,131 16,807,649 867,689,194 867,689,194 

4.70% 89.92% 3.44% 1.94% 100% 

VaR 99% (kernel) 115,680,937 690,374,716 49,140,939 10,645,070 865,841,660 865,841,660 
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Allocation Line 1 Line 2 Line 3 Line 4 Sum Risk Meas. 

13.36% 79.73% 5.68% 1.23% 100% 

VaR 99% (kernel 2) 107,557,763 702,247,027 46,262,134 10,866,270 866,933,195 866,933,195 

12.41% 81.00% 5.34% 1.25% 100% 

VaR 99% (kernel 3) 104,219,977 706,509,726 45,265,226 10,953,550 866,948,479 866,948,479 

12.02% 81.49% 5.22% 1.26% 100% 

Exponential 27,850,426 166,607,986 20,890,454 10,989,763 226,338,629 226,338,629 

12.30% 73.61% 9.23% 4.86% 100% 

Exponential 37,216,272 245,941,709 23,451,637 8,755,958 315,365,576 315,365,576 

11.80% 77.99% 7.44% 2.78% 100% 

Exponential -3,671,904,055 23,720,252,516 -4,880,193,171 -3,252,109,822 11,916,045,468 11,916,045,468 

-30.81% 199.06% -40.95% -27.29% 100% 

Proportional Hazard 36,080,499 226,703,991 25,110,583 11,640,570 299,535,643 299,535,643 

12.05% 75.69% 8.38% 3.89% 100% 

Proportional Hazard 28,192,014 168,301,360 21,223,234 11,199,323 228,915,932 228,915,932 

12.32% 73.52% 9.27% 4.89% 100% 

Proportional Hazard 24,363,235 141,822,074 19,212,540 10,880,196 196,278,045 196,278,045 

12.41% 72.26% 9.79% 5.54% 100% 

Wang 27,893,622 164,362,273 21,313,685 11,452,085 225,021,665 225,021,665 

12.40% 73.04% 9.47% 5.09% 100% 

Wang 33,402,026 201,407,441 24,294,793 12,004,713 271,108,972 271,108,972 

12.32% 74.29% 8.96% 4.43% 100% 

Wang 39,867,730 247,043,116 27,573,810 12,410,105 326,894,761 326,894,761 

12.20% 75.57% 8.44% 3.80% 100% 

Exponential Trans. 33,243,528 196,069,742 24,547,850 12,328,655 266,189,775 266,189,775 

12.49% 73.66% 9.22% 4.63% 100% 

Exponential Trans. 29,810,539 174,713,683 22,580,540 11,889,856 238,994,619 238,994,619 

12.47% 73.10% 9.45% 4.97% 100% 

Exponential Trans. 28,119,857 164,276,003 21,583,912 11,637,064 225,616,835 225,616,835 

12.46% 72.81% 9.57% 5.16% 100% 

Myers-Read 120,879,204 1,006,221,885 50,599,598 -7,876,720 1,169,823,967 1,169,823,967 
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Allocation Line 1 Line 2 Line 3 Line 4 Sum Risk Meas. 

 1,357,643,965 10.33% 86.01% 4.33% -0.67% 100% 

Myers-Read 64,285,407 756,847,100 37,746,242 -8,285,324 850,593,426 850,593,426 

 1,038,413,423 7.56% 88.98% 4.44% -0.97% 100% 

Myers-Read 60,821,986 606,579,733 21,827,406 -9,690,768 679,538,358 679,538,358 

 867,358,356 8.95% 89.26% 3.21% -1.43% 100% 

Esscher 8,226,240 1,987,777,539 54,262,714 72,291,051 2,122,557,544 2,122,557,544 

 1.E-07 0.39% 93.65% 2.56% 3.41% 100% 

Esscher 27,359,301 163,201,071 20,690,228 11,031,052 222,281,653 222,281,653 

 1.E-09 12.31% 73.42% 9.31% 4.96% 100% 

Kamps 26,654,710 155,020,509 20,725,105 11,406,228 213,806,553 213,806,553 

 1.E-08 12.47% 72.51% 9.69% 5.33% 100% 

Kamps 40,195,291 249,028,113 27,434,525 12,082,021 328,739,950 328,739,950 

 1.E-11 12.23% 75.75% 8.35% 3.68% 100% 

D'Arcy 55,387,701 408,352,811 25,296,290 5,487,442 494,524,244 494,524,244 

 1,357,643,965 11.20% 82.57% 5.12% 1.11% 100% 

D'Arcy 104,209,232 875,467,350 62,492,051 11,388,390 1,053,557,023 1,053,557,023 

 1,038,413,423 9.89% 83.10% 5.93% 1.08% 100% 

Bodoff 47,772,088 273,086,001 36,572,490 18,591,385 376,021,964 376,021,964 

VaR 90% 12.70% 72.63% 9.73% 4.94% 100% 

Bodoff 66,892,452 393,236,293 46,970,415 21,592,664 528,691,824 528,691,824 

VaR 95% 12.65% 74.38% 8.88% 4.08% 100% 

Bodoff 104,581,664 670,427,703 66,183,982 26,165,006 867,358,356 867,358,356 

VaR 99% 12.06% 77.30% 7.63% 3.02% 100% 

RTVaR 93,544,093 654,561,402 50,055,237 11,458,019 809,618,751 809,618,751 

11.55% 80.85% 6.18% 1.42% 100% 

RTVaR 107,255,495 824,861,293 53,516,378 11,599,036 997,232,202 997,232,202 

10.76% 82.72% 5.37% 1.16% 100% 

RTVaR 114,157,530 935,144,574 61,454,489 11,804,261 1,122,560,854 1,122,560,854 

10.17% 83.30% 5.47% 1.05% 100% 
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These aggregate risk measures vary tremendously, and 
thus so do the by-line allocations. For instance, it is trivial 
that the  quantile VaR is far greater than the 95% quan-
tile VaR. Therefore, in the second row for each method, 
Table 5 again lists the allocations as a percentage of the ag-
gregate risk measure. These are the percentages on which 
we will base our comparisons. This is not only because it fa-
cilitates comparisons, but also because this is in line with 
practice, where the actual capital of a company may not be 
given in terms of a risk measure at all, or even if it is, it may 
not be the measure used for allocation. 

The first observation when comparing the allocations 
is the realization that many of them look quite similar, 
which resonates with observations in other studies. For in-
stance, in the context of the assumptions used for the Ca-
sualty Actuarial Society Dynamic Financial Analysis mod-
eling challenge, Vaughn (2007) points out that a variety of 
methods, including allocations based on “covariance, My-
ers-Read, RMK with variance, Mango capital consumption, 
and XTVaR99 are all remarkably similar.” We find similar re-
sults in the context of an example from life insurance (Bauer 
and Zanjani 2013). There are a few outliers, however, most 
notably the exponential allocation with  (Exp3). The 
reason is that, in that case, there is an extreme weight on 
the extreme tail, which, in turn, is driven by very extreme 
realizations of Line 2. Indeed, there are various realizations 
in the aggregate tail where the line realizations for Lines 1, 
3, and 4 are under the expected loss, which explains the re-
sulting negative allocations to these lines. 

For comparing the remaining allocations, in analogy to 
the comparison in Section 4.2, we note that each allocation 
in our four-line context is characterized by three—not 
four—real numbers, since the fourth follows by subtracting 
the sum of the others from 100%. Hence, as in Figure 2, 
we can visualize allocations graphically, now as points in 
three-dimensional space. Moreover, we can evaluate the 
distance between two allocations using the Euclidean norm. 

Figure 7a in Appendix B plots all of our allocations except 
for the aforementioned Exp3. From this, we see that there 
are a few other outliers in the sense that the distance to 
other allocation methods is quite significant: three VaR al-
locations—namely the “simple” calculation (VaR1S, VaR2S) 
for both confidence levels and the bell curve–based calcu-
lation for the higher confidence level (VaR2B)—and the Es-
scher allocation for the (high) parameter of 1E-7 (Essch1). 
The intuition for the latter is, again, the exponential weight 
pushing all relevance to the extreme tail where Line 2 dom-
inates the others. Hence, both the exponential allocation 
and the Esscher allocations are extremely sensitive to the 
choice of the parameter (although this sensitivity does not 
appear to apply to the Kamps allocation). For VaR, on the 
other hand, it is well known that estimation based on Monte 
Carlo simulation is erratic (Kalkbrener 2005), so it may be 
numerical errors driving these outliers (at least for VaR1S). 
Two VaR allocations calculated using the kernel smoothing 
method (VaR1K, VaR2K) fall closer to the EV and other allo-
cation methods. 

Interestingly, aside from the “outlier” allocations men-
tioned above and two Myers-Read allocations, the points 
all appear to lie on a parabola-shaped curve in three-di-
mensional space that is suggestive of a systematic pattern. 

Hence, like the findings in Section 4.2, the differences 
among allocations seem to be explained by a single para-
meter. In order to zoom in on the remaining allocations, 
Figure 7b replots the same points, but this time we exclude 
outlying allocations as well as the two outer Myers-Read al-
locations. Again, the allocations seem related, and we find 
that the EV allocation plays an “extreme role.” This may not 
come as a surprise since suitable allocation methods should 
penalize risk “more than linearly” (Venter 2010). 

A number of allocation methods are very close to the EV 
allocation: the Kamps, Wang, Bodoff, and covariance allo-
cations are all within 0.06 of the EV allocation. In contrast, 
all the TVaR, RTVaR, average TVaR, D’Arcy, and Myers-Read 
allocations (except one) are bunched together between 0.07 
and 0.19—and all roughly along the parabola-shaped curve, 
where the order appears to be driven by the parameters. The 
former allocation methods close to the EV are all driven by 
the entire distribution, whereas the latter allocation meth-
ods are all focused on the tails (though the Myers-Read al-
location does depend on the entire distribution). 

Figure 7a shows that Bauer-Zanjani allocations (BZ
roughly lie along the parabola when the risk-aversion pa-
rameters are large, so that the allocations roughly coincide 
with many tail-based allocations when the counterparty is 
more risk averse. However, when the counterparty is ap-
proaching risk neutrality, or when  is small, Bauer-Zanjani 
allocations produce results that deviate from other alloca-
tions. A key reason for this finding lies in the underpinning 
optimization problem that delivers an optimal portfolio on 
which the allocation is based. As is evident from Table 8, es-
pecially for smaller choices of  the portfolio weights vary 
in their values. In particular, the weight for line 3,  is 
relatively low, explaining why less capital is allocated to it. 

Two key observations emerge. First, we observe a disso-
nance between allocations based on the tail and allocations 
based on the entire distribution. But which one is more ap-
propriate? Should we, or should we not, focus on tails? Ven-
ter (2010) argues that from an economic stance, risk taking 
is not risk free—any modification to risk taking should carry 
some charge, so a focus on the tails is misguided. He sup-
ports using marginal (i.e., Euler-based) methods that are 
based on the entire distribution, such as the Wang transfor-
mation, since they are “the most commensurate with pric-
ing theory.” However, D’Arcy (2011) and Myers and Read 
(2001) also present approaches with economic motivations. 
Second, we observe that conventional allocations behave in 
a qualitatively different manner from the economic Bauer-
Zanjani allocations. 

4.3.3. COMPARISONS OF PRICING UNDER DIFFERENT 
RISK MEASURES 

In this section, we explore pricing implications of different 
risk measures using the catastrophe reinsurance data. More 
precisely, we calculate prices using premium principles. 
Premium principles assume that the (net) premium is set 
with a positive loading on expected losses corresponding to 
a risk measure. A further discussion on some of the basic 
methods and premium principles is offered by Kaas and col-
leagues (2008). Here, we set the aggregate net premium to 
meet a profit-loading requirement, calibrate the risk mea-
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sure so that the risk measure on losses meets the target 
aggregate net premium level (i.e., we solve for 

 and then generate by-
line prices using capital allocation techniques.8 For VaR-
based and TVaR-based pricing, we use the following formula 
for calibration: 

where  is the capital cost, and we assume it to be 8% in our 
calculation. 

First, we need to obtain the profit loading on aggregate 
expected losses from the data. The data provider does not 
reveal expenses allocated to each business line, so the true 
profit loadings are unknown to us. We assume a constant 
expense loading on expected losses across the four lines. 
We calculate allocations using expense loads of 30% and 
60%, with the former corresponding to the approximate all-
line U.S. industry average for 2017 and the latter chosen 
for comparison purposes. Our data suggests an 84.29% mar-
gin of aggregate premiums over aggregate expected losses. 
Therefore, when assuming a 60% expense loading, the 
profit loading on expected losses is 24.29% in aggregate and 
38.48%, 20.19%, 22.19%, and 48.62%, respectively, by line. 
When assuming a 30% expense loading, the profit load-
ing on expected losses is 54.29% in aggregate and 68.48%, 
50.19%, 52.19%, and 78.62%, respectively, by line. For each 
risk measure, we solve for the parameter in the risk mea-
sure. Finally, we use the calibrated risk measures to calcu-
late net premium by line using capital allocation methods 
and to deduce profit loadings by line. We do not include the 
Myers-Read, D’Arcy, and Bauer-Zanjani methods here be-
cause these methods do not directly correspond to a risk 
measure. Table 6 provides the results. 

In Table 6, we also include the provided aggregate pre-
mium markups, although—as noted in Footnote 7—these 
should be interpreted with care. At first glance, these 
markups suggest that Line 4 is the most profitable and Line 
2 the least profitable. However, under the various capital 
allocation methods and the assumption of a common un-
derwriting expense load across lines, Line 2 appears to be 
priced with the largest profit loadings, while Line 4 has the 
smallest loadings. 

Comparing the results across methods, we see substan-
tial variation in the implied loadings for Lines 3 and 4. This 
is not surprising, given their small size relative to the other 
lines: the variation between the methods is less pronounced 
for the larger lines, Line 1 and Line 2. VaR-based pricing, for 
which we again use the kernel smoothing method, stands 
out from the other methods as it implies a larger loading 
for Line 1 than for Line 2 in the case of 30% expense load-
ings. TVaR-based pricing produces results similar to those 
of VaR for a 60% loading, but it produces significantly lower 
loadings for Line 1 in the case of 30% expense loadings. 
Distortion risk measures, standard deviation, the Esscher 

transformation, and the Kamps transformation all produce 
similar pricing results in terms of ranking, with Line 2 
Line 1  Line 3  Line 4. So, an important takeaway here 
is that, although the four lines come with significant dif-
ferences in terms of relative size, risk measures can yield 
different rankings and weights in pricing. Tail-focused risk 
measures, including VaR and TVaR, yield qualitatively dif-
ferent results than measures considering the entire distrib-
ution. 

4.3.4. STABILITY OF THE METHODS 

In this section, we study the stability of the allocation 
methods. In particular, we recalculate the allocations from 
Subsection 4.3.2 for two distorted portfolios: 

The intuition behind the first stability test is clear: an al-
location should be robust to unsystematic changes in the 
sample. When adding, changing, or subtracting from the 
sample in an unsystematic way, we would hope to see the 
allocation stay more or less the same. And since we cannot 
add to or change the sample because we do not know the 
data-generating process, we subtract. 

The second test is motivated by ideas from Kou, Peng, 
and Heyde (2013), who discuss robustness properties of risk 
measures and—based on the observation that coherent risk 
measures are not always robust—define so-called natural 
risk statistics. It is important to note that our angle is dif-
ferent in that we consider allocations and not risk measures, 
even though the underlying issues are the same. Specif-
ically, extreme tail scenarios are very hard to assess—for 
instance, even with 5,000 observations one cannot distin-
guish between the Laplace distribution and the  distribu-
tions (Heyde and Kou 2004). Therefore, modifications in the 
extreme tail should not have a tremendous impact on the 
allocation. 

As indicated in the previous subsection, we can identify 
allocations for our four business lines with points in three-
dimensional space, and we can identify the difference be-
tween two allocations with the (Euclidean) distance be-
tween the corresponding points. As a yardstick when 
assessing allocations, note that the difference between the 
90% and the 99% TVaR is 0.056, which is thus a sizable dif-
ference. The difference between the 95% and the 99% TVaR 
is 0.026, which is still considerable. 

• Sensitivity 1: We eliminate 1,000 arbitrary sample re-
alizations, leaving us with 49,000 realizations. 

• Sensitivity 2: We replace the five worst-case (aggre-
gate) scenarios with the sixth-worst aggregate sce-
nario (so that our sample now contains six identical 
scenarios). 

In the pricing context, the risk measure is typically applied on the loss distribution. For instance, the transform methods (proportional 
hazard, Wang, exponential) can be interpreted as risk-adjusting the distribution for obtaining the aggregate net premium. Importantly, 
while we allocate  by line, we can obtain an allocation of capital by subtracting expected values as in  Thus, the presented 
information is equivalent. 
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Table 6. Profit loadings on expected losses as pricing result using calibrated risk measures 

60% expense loadings 30% expense loadings 

Risk Measure Calibration Line 1 Line 2 Line 3 Line 4 Calibration Line 1 Line 2 Line 3 Line 4 

Std. Dev. β = 0.2801 23.36% 27.33% 15.22% 3.92% β = 0.6260 52.21% 61.08% 34.02% 8.76% 

VaR α = 0.9585 25.55% 26.29% 16.80% 9.28% α = 0.9991 61.87% 60.88% 21.98% 11.69% 

TVaR α = 0.8903 24.20% 26.36% 18.07% 9.33% α = 0.9973 42.88% 62.28% 35.57% 10.11% 

Exponential c = 0.1154 23.69% 25.80% 19.79% 14.47% c = 0.2147 52.43% 58.11% 42.90% 30.08% 

Prop. Hazard a = 0.7963 21.39% 27.67% 14.56% 5.11% a = 0.6988 36.43% 64.20% 27.31% 15.42% 

Wang λ = 0.2987 23.77% 26.70% 17.24% 7.44% λ = 0.5830 51.95% 60.49% 36.08% 13.19% 

Exp. Trans. λ = 0.8364 24.69% 26.17% 18.82% 9.41% λ = 0.3875 55.12% 59.02% 40.38% 17.26% 

Esscher t= 1.24E-9 22.60% 27.68% 14.22% 2.99% t= 2.09E-9 48.95% 62.45% 30.10% 5.57% 

Kamps t= 5.85E-9 24.77% 26.31% 18.40% 8.15% t= 1.36E-9 53.54% 60.36% 36.21% 11.20% 

Bodoff α = 0.9585 23.78% 26.25% 18.14% 12.26% α = 0.9991 48.86% 61.05% 36.69% 14.12% 

Data 38.48% 20.19% 22.19% 48.62% 68.48% 50.19% 52.19% 78.62% 
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Figure 5 plots distances between the allocations for the 
original portfolio and the modified portfolio for both sen-
sitivity portfolios and all considered allocations methods. 
Again, we find that VaR-based allocations and the Exp3 al-
location stand out as extreme outliers, though on differ-
ent tests. More specifically, VaR allocations respond par-
ticularly poorly to unsystematic changes in the portfolio, 
whereas the exponential allocation is particularly sensitive 
to changes in the tail. This contrasts with the findings of 
Kou, Peng, and Heyde (2013), who argue that VaR has good 
robustness properties for risk measurement. VaR alloca-
tions based on the kernel estimator are stable at both the 
95% and the 99% levels. We eliminate VaR-based (except for 
VaR kernel) and exponential allocations and plot the differ-
ences for the remaining methods for both tests separately. 
Figure 6 displays the results. 

Figure 6a shows the results for the (unsystematic) mod-
ification via the elimination of 1,000 samples. We find that 
all methods are relatively stable (ignoring VaR1S). The max-
imal difference now is about 0.0025, which is not too sizable 
for the Myers-Read 2 allocation: the corresponding alloca-
tion vectors are (7.56%, 88.98%, 4.44%, -0.97%) and (7.78%, 
88.85%, 4.38%, -1.01%), respectively. 

In contrast, when eliminating tail scenarios, the impact 
can be considerable. Figure 6b shows that, in some cases, 
it can amount to more than 0.04. The most sensitive allo-
cation methods are the Myers-Read, D’Arcy, Esscher, and 
the Bauer-Zanjani for high —all of which are tail-focused 
allocations. However, we do not find the same for TVaR-
based allocations, which is contrary again to the findings 
from Kou, Peng, and Heyde (2013) for risk measurement. 
Also noteworthy is the stability of the proportional hazard, 
Wang, Kamps, and Bodoff allocations, so it appears that sta-
bility is less critical for methods that are not tail focused. 

5. CONCLUSION 

Actuarial literature contains numerous contributions on the 
subject of capital allocation. While theoretical questions 
are not settled and deserve continued attention, implemen-
tation questions have received much less attention but are 
of great importance to practitioners. This paper attempts to 
contribute by exploring differences and commonalities be-
tween various methods that have been proposed. 

We find substantial differences across the universe of 
methods, although we find that all allocations appear sys-
tematically related in the context of our examples. Stability 
issues arise, predictably, in methods whereby allocations 
are keyed to one outcome or to a small set of outcomes—as 
is the case with some VaR-based allocations and allocations 
based on tail-risk measures. While the analysis here is 
based on specific data, we find the systematic relationship 
surprising and also encouraging in view of companies’ 
problem of choosing the “correct” method. More research is 
needed to verify whether these findings carry over to other 
situations. 

Figure 5. Stability of allocations: Distance between 
allocations on basic and modified portfolios for all 
methods 
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Figure 6. Stability of allocations: Distance between allocations on basic and modified portfolios for allocation 
methods (except Exp and VaR) 
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APPENDICES 

APPENDIX A. BAUER-ZANJANI ALLOCATION 
IMPLEMENTATION 

A.1. THE CASE OF HETEROGENEOUS BERNOULLI LOSSES 

We consider consumers that face Bernoulli-distributed 
losses. We allow for heterogeneity in consumer preferences 
as well as in the losses. More specifically, we assume that 
there are  groups of consumers, where group  contains 
identical consumers with wealth level  and utility func-
tion  that face independent losses  occurring with 
a probability  The participation constraint, 
again, is given by their autarky levels: 

The optimization problem in the one-period model without 
a regulatory constraint can then be set up, conveniently, by 
observing that the numbers of losses in the different groups 
follow independent binomial  distributions. 

For counterparty-based allocations, we obtain for each 
group 

where  is a constant such that 

A.2. THE CASE OF CATASTROPHE REINSURANCE LOSSES 

We assume each line represents a counterparty with a CARA 
preference. The indemnity of each line follows the sim-
ulated distribution from the data. We consider the profit 
maximization problem, Equation (8), and we can show that 
under a CARA preference, the solution does not depend on 
initial wealth and 

Therefore, we can simplify the optimization problem in 
Equation (8) to five choice variables 
The allocations are calculated based on optimized variables 
and Equation (9). 
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Appendix B. Additional tables and figures 

Table 7. Optimization and allocation results: Bauer-Zanjani allocation, heterogeneous Bernoulli losses 

N = 5 Optimization Results Allocation Results 

Group 1 Group 2 Group 3 

0.1 5.2608 0.0913 0.1961 0.3023 0.9232 0.9747 1.0000 12.73% 31.03% 56.25% 

0.2 6.3701 0.1023 0.2270 0.3719 0.9584 0.9846 1.0000 11.89% 31.82% 56.29% 

0.3 6.9498 0.1085 0.2542 0.4375 0.9589 0.9889 1.0000 10.17% 31.13% 58.70% 

0.4 7.4627 0.1162 0.2820 0.5087 0.9773 0.9912 1.0000 10.53% 30.72% 58.75% 

0.5 7.7758 0.1226 0.3114 0.5868 0.9810 0.9927 1.0000 10.53% 30.65% 58.82% 

0.6 8.0124 0.1290 0.3429 0.6720 0.9835 0.9936 1.0000 10.59% 29.23% 60.18% 

0.7 8.2992 0.1356 0.3766 0.7639 0.9855 0.9943 1.0000 10.58% 29.21% 60.22% 

0.8 8.5196 0.1425 0.4126 0.8607 0.9871 0.9948 1.0000 10.57% 29.19% 60.24% 

0.9 8.6959 0.1495 0.4507 0.9606 0.9884 0.9952 1.0000 10.56% 29.17% 60.27% 

1.0 8.8415 0.1569 0.4909 1.0617 0.9894 0.9955 1.0000 10.55% 29.16% 60.29% 

1.1 8.9645 0.1646 0.5327 1.1617 0.9903 0.9957 1.0000 9.71% 28.19% 62.10% 

1.2 9.1344 0.1725 0.5759 1.2592 0.9909 0.9960 1.0000 9.68% 30.09% 60.23% 

1.3 9.2885 0.1807 0.6200 1.3527 0.9915 0.9962 1.0000 9.67% 30.06% 60.27% 

1.4 9.4235 0.1892 0.6647 1.4412 0.9920 0.9964 1.0000 9.66% 30.04% 60.30% 

1.5 9.5434 0.1980 0.7096 1.5242 0.9924 0.9965 1.0000 9.66% 30.01% 60.33% 

1.6 9.6511 0.2071 0.7541 1.6015 0.9928 0.9967 1.0000 9.65% 29.99% 60.35% 

1.7 9.7489 0.2165 0.7981 1.6731 0.9931 0.9968 1.0000 9.65% 29.97% 60.38% 

1.8 9.8384 0.2261 0.8411 1.7392 0.9934 0.9969 1.0000 9.64% 29.96% 60.40% 

1.9 9.9211 0.2360 0.8829 1.8001 0.9937 0.9970 1.0000 9.64% 29.94% 60.42% 

2.0 10.0048 0.2461 0.9233 1.8563 0.9939 0.9971 1.0000 9.06% 28.94% 62.00% 

N = 100 Optimization Results Allocation Results 

Group 1 Group 2 Group 3 

0.1 62.2839 0.0934 0.2057 0.3272 0.9294 0.9831 1.0000 14.31% 32.53% 53.17% 

0.2 67.7119 0.1037 0.2332 0.3861 0.9644 0.9914 1.0000 14.27% 32.26% 53.46% 

0.3 70.5103 0.1106 0.2587 0.4480 0.9750 0.9941 1.0000 14.09% 32.13% 53.78% 

0.4 72.3996 0.1171 0.2854 0.5169 0.9818 0.9955 1.0000 14.10% 32.04% 53.86% 

0.5 73.7877 0.1233 0.3142 0.5936 0.9853 0.9964 1.0000 13.84% 31.84% 54.32% 

0.6 74.9113 0.1297 0.3453 0.6780 0.9876 0.9969 1.0000 13.90% 31.87% 54.24% 

0.7 75.8366 0.1362 0.3788 0.7691 0.9893 0.9973 1.0000 13.69% 31.71% 54.60% 
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0.8 76.6451 0.1430 0.4145 0.8654 0.9905 0.9976 1.0000 13.83% 31.80% 54.37% 

0.9 77.3476 0.1500 0.4525 0.9649 0.9915 0.9978 1.0000 13.75% 31.74% 54.50% 

1.0 77.9538 0.1573 0.4925 1.0656 0.9923 0.9980 1.0000 13.67% 31.68% 54.64% 

1.1 78.5252 0.1650 0.5342 1.1655 0.9929 0.9982 1.0000 13.67% 31.68% 54.65% 

1.2 79.0247 0.1729 0.5773 1.2627 0.9935 0.9983 1.0000 13.59% 31.62% 54.79% 

1.3 79.5024 0.1811 0.6214 1.3559 0.9940 0.9984 1.0000 13.59% 31.62% 54.79% 

1.4 79.9183 0.1896 0.6660 1.4442 0.9943 0.9985 1.0000 13.40% 31.48% 55.12% 

1.5 80.3390 0.1983 0.7108 1.5271 0.9947 0.9986 1.0000 13.50% 31.55% 54.94% 

1.6 80.7121 0.2074 0.7553 1.6042 0.9950 0.9987 1.0000 13.50% 31.55% 54.95% 

1.7 81.0645 0.2168 0.7991 1.6757 0.9953 0.9987 1.0000 13.42% 31.49% 55.09% 

1.8 81.4104 0.2264 0.8421 1.7417 0.9955 0.9988 1.0000 13.42% 31.49% 55.10% 

1.9 81.7244 0.2363 0.8838 1.8026 0.9957 0.9988 1.0000 13.41% 31.48% 55.11% 

2.0 82.0221 0.2464 0.9242 1.8586 0.9959 0.9989 1.0000 13.33% 31.42% 55.25% 

Table 8. Optimization and allocation results: Bauer-Zanjani allocation, catastrophe reinsurance losses 

Optimization Results Allocation Results 

α a q (1) q (2) q (3) q (4) Line 1 Line 2 Line 3 Line 4 

5.00E-10 2.89E+08 0.8290 0.6538 0.5235 0.4896 16.06% 77.86% 4.70% 1.38% 

7.00E-10 3.98E+08 0.9076 0.7990 0.6436 0.6268 13.70% 80.54% 4.47% 1.30% 

1.00E-09 5.02E+08 0.9467 0.8863 0.7300 0.7284 11.33% 83.07% 4.38% 1.23% 

2.00E-09 6.94E+08 0.9761 0.9616 0.8359 0.8457 7.72% 86.91% 4.32% 1.05% 

3.00E-09 8.13E+08 0.9832 0.9799 0.8766 0.8752 5.86% 88.78% 4.35% 1.02% 

4.00E-09 9.18E+08 0.9874 0.9874 0.9007 0.8758 4.32% 90.28% 4.27% 1.13% 

5.00E-09 1.02E+09 0.9902 0.9913 0.9195 0.8615 3.54% 91.10% 3.99% 1.38% 

6.00E-09 1.13E+09 0.9925 0.9934 0.9348 0.8431 2.93% 91.76% 3.59% 1.72% 

7.00E-09 1.22E+09 0.9942 0.9949 0.9457 0.8299 2.25% 92.64% 3.08% 2.03% 

8.00E-09 1.31E+09 0.9954 0.9958 0.9526 0.8237 1.66% 93.20% 2.85% 2.28% 

9.00E-09 1.39E+09 0.9963 0.9965 0.9574 0.8235 1.39% 93.48% 2.67% 2.47% 

1.00E-08 1.45E+09 0.9970 0.9971 0.9610 0.8272 1.15% 93.68% 2.57% 2.60% 
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Figure 7. Comparison of allocations, catastrophe insurance losses 
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