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The purpose of this article is to provide a computational tool via Maximum Likelihood 
(ML) and Markov Chain Mont Carlo (MCMC) methods for estimating the renewal function 
when the inter-arrival distribution of a renewal process is single-parameter Pareto (SPP). 
The proposed method has applications in a variety of applied fields such as insurance 
modeling and modeling self-similar network traffic, to name a few. It is shown that 
inter-arrivals of insured damages for floods and tornados during 2000-2020 in the USA 
have SPP distribution. It is also shown that inter-arrivals of recent hurricanes hitting 
New Orleans fit SPP distribution. For the Bayesian estimation of SPP parameters via the 
MCMC method, based on the Metropolis algorithm, gamma and shifted exponential 
distributions are used. Simulations confirm that the MCMC estimator of the renewal 
function outperforms maximum likelihood estimator (MLE) with regards to its accuracy 
when the sample size is relatively small. However, for large samples, the accuracies of ML 
and Bayes estimators for the renewal function are comparable. 

1. INTRODUCTION 

In the literature, we often see the application of a single-
parameter Pareto (SPP) distribution as a model to describe 
income and wealth. In insurance applications, heavy-tailed 
distributions of the SPP sort are essential tools for mod-
eling extreme losses, especially for more risky types of in-
surance, such as medical malpractice insurance. In the field 
of actuarial science, the SPP distribution is combined with 
another distribution to model the portion of data char-
acterized by large claims with low frequencies, i.e., high-
severity risks. For the other portion of data characterized 
by small claims with high frequencies, i.e., low-severity 
risks, other distributions such as the exponential or the log-
normal are used. Such models are called composite mod-
els. Deng and Aminzadeh (2020) developed a Bayesian pre-
dictive Weibull-Pareto composite model, and Aminzadeh 

and Deng (2019) developed a Bayesian predictive inverse 
gamma–Pareto composite model. Recent work in the field 
of network traffic has considered an SPP distribution as the 
interarrival distribution. Fras et al. (2010) considered the 
distribution for modeling self-similar network traffic. Har-
rison et al. (2014) used a network simulator to generate sta-
tistics on arrival times of traffic and concluded that an SPP 
distribution is more appropriate than the conventional ex-
ponential distribution in modeling interarrival times on a 
bursty network. The SPP distribution has also been used for 
insurance models: Hanafy (2020) used the distribution for 
interarrivals of claims on data from Egyptian fire insurance 
companies. 

The Lomax distribution (also known as a Pareto Type II 
distribution) is a heavy-tailed probability distribution used 
in business, economics, actuarial science, queueing theory, 
and Internet traffic modeling. It is essentially the SPP dis-
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tribution, but its support begins at zero and it has a proba-
bility density function (PDF) given as 

The above PDF can also be written as 

which is the standard form of the PDF for the SPP and 
which is also used by Ramsay (2006). Garsva et al. (2014) 
considered a Pareto Type II distribution as a model for 
the packet interarrival time distribution in an academic 
computer network, and they concluded via a Kolmogorov-
Smirnov test that it was an appropriate choice. 

In this paper, we analyze flood and tornado insurance 
damage data sets (provided in the Emergency Events Data-
base (EM-DAT); see appendix) in the United States from the 
year 2000 to the year 2020. We show that both data sets 
fit the SPP distribution well. The interarrivals between two 
insured damages are defined as the difference between the 
start date of an occurrence and the start date of the subse-
quent occurrence. 

Our purpose in this paper is to use SPP as the interarrival 
distribution of a renewal process and provide the ML- and 
MCMC-based Bayes estimators of the renewal function. 
Martino (2018) provides a thorough review of MCMC meth-
ods and compares them with numerical methods. In the 
current paper, we use the Metropolis-Hastings algo-
rithm—see Casella and Berger (2004)—for the MCMC 
method to estimate the renewal function. 

In Section 2, we define the renewal function and give 
computational formulas for the renewal function based on 
Ramsay (2006). These formulas are used in the Mathemat-
ica code for simulations and estimation of the renewal 
function. Section 3 provides the ML estimation for the pa-
rameters of the SPP distribution. Section 4 provides the de-
rivation of two conditional posterior distributions that are 
based on shifted-exponential and gamma priors. In Section 
5 we outline the steps taken in the Mathematica code to use 
the MCMC algorithm and discuss a summary of the sim-
ulation results. Section 6 provides numerical examples to 
illustrate the computations, and Section 7 concludes. The 
Mathematica code used for the simulations and the estima-
tion of the renewal function in this paper is available from 
the authors. 

2. RENEWAL FUNCTION OF THE SPP 
DISTRIBUTION 

Let  be a counting process, where  denotes 
the number of events that occur by time  Let  denote 
the time between the st and th events of this 
process,  If  is a sequence of indepen-
dent identically distributed (iid) random variables, then the 
process  is called a renewal process. 

Renewal theory has many applications in stochastic 
modeling, and as a result, statistical inference with respect 
to the renewal function is of interest in many applied fields. 
For example, in reliability theory, a renewal process can be 
used to model successive repairs of a failed machine. In 

actuarial science, a renewal process can be used to model 
the successive occurrences of risks. Hardy (2006) provides 
many examples for risk measures with actuarial applica-
tions, such as in property and casualty (P&C) insurance, life 
insurance, and the banking industry. Necir, Rassoul, and 
Meraghni (2010) provide a semiparametric estimate of the 
renewal function for heavy-tailed risks. Woo (2011) pro-
vides two-sided bounds for the renewal function consider-
ing a variety of reliability classifications. 

In this paper, we consider ML- and MCMC-based Bayes 
estimators of the renewal function. Actuaries should find 
the results useful in applications where events (risks) occur 
according to a counting process and the renewal random 
variable has an SPP distribution. One of the measures as-
sociated with a renewal process is the renewal function, 

 In some applications of renewal processes, 
one is interested in estimating the number of renewals by 
time  Provided that the parameters associated with the in-
terarrival distribution are known or estimated, the compu-
tation can be accomplished by using the integral equation 

where  and  are, respectively, the PDF and the cumu-
lative distribution function (CDF) of the interarrival ran-
dom variable  For example: (a) for the uniform(0,1) in-
terarrival distribution,  and (b) for 
the exponential interarrival distribution with the PDF 

 where  is the scale parameter, 
 the reason being that when the inter-

arrival times have an exponential distribution, 
 However, the derivation of  in a 

closed form for many interarrival distributions is not 
straightforward. Let  denote the time of th 
renewal. It can be shown that 

where  and  respectively, are the PDF and the CDF of 
 Therefore, to find  in a closed form, not only must 

we identify the distribution of  but we must also evalu-
ate  which may not be trivial. 

Ross (2007) supplies us with a method to approximate 
the renewal function. The method computes 
…,  recursively to approximate the renewal function 

 using 

where  is used for the computation of 
 Therefore, 

are found consecutively to approximate the renewal func-
tion  Ross indicates that for a large   is ap-
proximated by  quite well. The method is useful when 

 and  have explicit expressions for an 
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interarrival distribution. For example, if the interarrival 
distribution is gamma (2,1) (shape parameter = 2, and scale 
parameter = 1), then 

Then using (2) it can be shown that the exact expression for 
the renewal function is 

For   is the exact value, where its ap-
proximate value based on  is calculated in Ross 
(2007) as 4.75. As another example, for the interarrival 
random variable with PDF  and CDF 

  is approximated as 
15.5089 (see Ross 2007). For some interarrival distribu-
tions,  cannot be derived in a closed form. For exam-
ple, consider the inverse Gaussian (IG) distribution and let 

 it can be shown that  but 
 cannot be written in a closed form. See Amin-

zadeh (2011), where the author provides a Bayes estimator 
of the renewal function using IG distributed interarrivals. 
For  with given values for  and  and un-
known values for  and  Mathematica cannot provide a 
closed form for 

However, for example, with  and 
for the above expected value we get 

via Mathematica with a long integration time, and the ex-
pression is quite complicated. SPP  which is consid-
ered in the current paper, is an even more difficult case, as 

cannot be obtained in a closed formula, even for selected 
values of  and 

For the SPP distribution, the approximation Ross pro-
vides is not practical. The reason is that  cannot 
be written in a closed form and therefore an approximate 
expression for the expected values must be derived or eval-
uated numerically, which would depend on  Even if a 
"good"expression for the expected value is found, different 
values of  would produce different expressions/approxi-
mations for the expected value. In addition, the recursive 
formula for  uses previous approximations for the 
expected value. Therefore even for a small value of 

 in the above sum has to be approximated for 
 In addition to the  approximation 

errors, one has to take into account the accumulated ap-
proximation errors for the expected value that are involved 
in the computation of  Thus, due to the many ac-
cumulated approximation errors involved for approximat-
ing  and  Ross’s method is not considered 
in this paper. 

The PDF of the SPP  random variable  with para-
meters  and  is given by 

Consider a renewal process  and let  the 
time between the st and th renewal, be distributed 
as SPP   Suppose from this process a 
random sample  is collected. The random sam-
ple will be used to find the ML and an approximate Bayes 
estimate for  via an MCMC algorithm. 

Ramsay (2006) applied Laplace transforms and general-
ized exponential integrals to develop the following exact 
expressions for PDF  and CDF  of  un-
der the assumption that  are iid from the 
SPP distribution and that  is a positive integer. Recall that 

 is the time of th renewal. The following formulas are 
from Ramsay (2006): 

where, 

and 

The approach for computing  in Ramsay is to use a 
series expansion and then use 

in (4) to compute  The above formulas are built into 
the Mathematica code of the current paper, and the NInte-
grate function of Mathematica is used to compute (4) based 
on input values  and 

Although the results given in Ramsay assume that  is 
a positive integer, simulation studies confirm that for both 
ML and Bayes estimates of the renewal function, once the 
ML and Bayes estimates of the parameters  and  are ob-
tained, the estimated values of  can be rounded to the 
nearest integer so that  and as a result an estimate 
for  can be obtained. The reason that in Ramsay 
is assumed to be a positive integer is that to derive (4), 
for complex  and Re  it is shown that the Laplace 
transform of  is given by  where 

 and  for 
 is the generalized exponential integral. And 

then  is inverted to get the Bromwich integral for 
 and consequently the CDF in (4) is derived. Simu-

lations confirm that by rounding the estimated values of 
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 the average squared error (ASE) of the ML and Bayes 
estimates of the renewal function is still quite small and 
that the MCMC-based Bayesian method outperforms the 
ML method with regard to accuracy when the sample size 
is small. For large sample sizes, the ML and Bayes methods 
have comparable accuracies. 

3. MAXIMUM LIKELIHOOD ESTIMATION OF 
M(T) 

Based on a random sample  from SPP
and using the likelihood function 

it can be shown that the ML estimates of  and  are 

and that  is a minimal sufficient statistic for 
 is the first-order statistic. The goal is to estimate 

Therefore, for each value of  in (6), and given estimates 
of  (based on a random sample  we can 
compute  via (4). Computations confirm that for se-
lected values  and  the CDF  in (4) is a de-
creasing function of  The Mathematica code in a while 
loop searches for an appropriate upper limit  for the sum 
in (6). The loop starts with  and continues until 

 and, using the value of  computes 
 as an estimate for 

It is also noted that through an estimate of  where 
 is a truncated time, the excess life of a renewal at time 

can be estimated. Let  denote the excess life at  and 
 be the mean of interarrival random variable 

We can use the well-known formula 

to find the ML estimate of  via the ML estimate 
 and the ML estimate of  The same formula 

above can be used to get an approximate (using simple sub-
stitution) Bayes estimate of  once Bayes estimates 
of  and  are found through the MCMC algorithm 
given in Section 5. 

4. BAYESIAN ESTIMATION OF M(T) 

In the literature, we find many instances where authors 
consider Bayesian inference for the parameters of the SPP 
distribution. Sun et al. (2021) adopt the Jeffreys prior to 
obtain Bayes estimates for  and  Kim, Kang, and Lee 
(2009) also provide Bayes estimates via the non-informa-
tive Jeffreys prior for SPP. Noor and Aslam (2012) provide 
non-informative as well as informative Bayes estimates of 
SPP parameters; however, in their paper, gamma priors are 
used for both  and 

The characteristics of the shifted exponential distribu-
tion with regard to its support  are similar to the sup-
port of SPP. This is the main reason that in the current 
paper we use the shifted exponential prior as opposed to 
another distribution with support  The PDF of the 
shifted exponential prior is given as 

where  (location parameter) and  (scale parameter) are 
hyperparameters associated with the prior distribution. 

For the conditional prior of  gamma  is selected, 
with the PDF 

where  (shape parameter) and  (scale parameter) are hy-
perparameters associated with the conditional prior distri-
bution. As mentioned earlier, although computation of the 
CDF  requires that  be an integer (as the formulas 
in (4) use only positive integers for  using a gamma dis-
tribution for the conditional prior does not cause an issue 
with regard to the accuracy of the ML and Bayes estimates 
of the renewal function. For the current paper, in the Math-
ematica code for simulations, once a Bayes estimate for  is 
obtained, it is rounded to the nearest integer for computa-
tional purposes. From (7) and (8), we get the joint prior as 

Now, using the likelihood function for a sample of size 
the joint posterior is given by 

To apply an MCMC algorithm, (11) is used to find the con-
ditional posteriors as 

and 

Simon and Adler (2021) provide a thorough reference on 
MCMC algorithms and compare several MCMC methods 
for estimating the parameters of the Pareto/negative bino-
mial distribution (NBD) model and their performance. The 
Handbook of Markov Chain Monte Carlo (Brooks et al. 2011) 
covers MCMC foundations, methodology, and algorithms, 
as well as MCMC’s use in a variety of practical applications 
in areas such as educational research, astrophysics, brain 
imaging, ecology, and sociology. Many authors have dis-
cussed the MCMC method via conditional posterior distrib-
utions and the Metropolis algorithm. In particular, the de-
scription and implementation of the Metropolis algorithm 
can be found in Casella and Berger (2004), among other 
books and articles. 

Ji, Aminzadeh, and Deng (2020) propose an MCMC 
Bayesian approach using the Metropolis algorithm and con-
ditional posteriors to obtain estimates of the parameters as 
well as an approximate predictive density via simulation, 
which can be used to compute life expectancy and other 
measures of interest in a Bayesian framework. Aminzadeh 
and Deng (2021) employ an MCMC method based on the 
Metropolis algorithm and conditional posterior distribu-
tions to estimate ruin probability based on nonhomoge-
neous Poisson process claim arrivals and inverse Gauss-
ian–distributed claim aggregates. The MCMC algorithm we 
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use in this paper is based on the same logic as the afore-
mentioned articles. 

Considering the conditional posterior distributions in 
(12) and (13), we can see that the kernel of the PDF in 
(12) does not belong to the gamma  distri-
bution, due to the extra term  Therefore, we use 
gamma  as a proposal distribution for the PDF in 
(12) within the MCMC algorithm.  and  are, respec-
tively, the shape and scale parameters of the proposal dis-
tribution gamma  For selected "true"values of  and 

 in simulation studies, values of  and  are selected in 
such a way that  is close enough to  while  is very 
small. This is because the expected value and variance of 
the proposal gamma  distribution are, respectively, 

 and 
As for the conditional posterior (13), we can see that it 

resembles the kernel of the generalized gamma
distribution with the PDF 

where  and  Note that  is 
the location parameter and  is the scale parameter. 

5. SIMULATION 

For selected values of  the Mathematica code 
(available from the authors upon request) first computes 
the "true"value of the renewal function  via (4). The 
code then generates random samples  from the 
SPP  distribution using a built-in function in Math-
ematica. For the generated sample 

 the following steps are taken: 

Note that the term MSE (mean squared error) refers to 
the expected value of an estimator under the squared-error 
loss function. In this paper, the term ASE refers to 

 where  is an estimate of the "true"para-
meter  based on a generated sample  

To compute the MCMC-based Bayes estimate of the re-
newal function, we use the conditional posterior distribu-
tions in (12) and (13). Let 
denote the conditional posterior PDF (RHS in (12)) of 
given  and  is the PDF of the proposal dis-
tribution gamma  for  As mentioned earlier, in 
simulation studies, for selected "true"values of  and 
the values of  and  are selected in such a way that 

 is close enough to  while  is very small. Also, 
the hyperparameters  and  are selected such that 
while  is small. Again, this is due to the expected value 
and variance of the gamma distribution. For example, if we 
select  in simulation, then one possibility would be 

 and 
It is noted that the expected value and the variance of 

the generalized gamma  which is used as 
the conditional posterior of  are, respectively, 

Therefore, the hyperparameters  and  are selected so that 
. We choose a value for  so that it is close 

to  and then find the corresponding value for 
. This way the Bayes estimates of  will be stable 

with a higher precision. For example, if the selected val-
ues are , , and , then one possibility 
is  and . In practice, given a sample from 
the SPP distribution, one does not have information on the 
"true"values of  and . If  and  are selected such that 
their product is close to the ML estimate of , while  is 
small, the Bayes estimates of  and  would be stable with 
a small ASE, and as a result the renewal function can be es-
timated with a higher accuracy. 

For example, if the ML estimates are 
 and  then we can 

choose hyperparameters as 

The same approach is used in Aminzadeh and Deng (2018) 
and Deng and Aminzadeh (2020) for the selection of hyper-
parameter values. Using ML estimates through a random 
sample helps to identify appropriate values for hyperpara-
meters that are consistent with the sample information. Se-
lection of hyperparameters using ML estimates is consid-
ered in the simulation studies (see Section 5 for a summary 
of results) as well as in the numerical example in Section 6. 

1. ML estimates of  and  are computed via the for-
mulas in Section 3. 

2. For each value of  in the While loop, ML estimates 
from Step 1 are used to compute the CDF in (4). 
The while loop starts with  and computes 

 via (4). Then for each value 
of   is calculated. Com-
putations confirm that for given values of  and 

 the CDF  in (4) is a decreasing function of 
The Mathematica code in the while loop searches for 
an appropriate upper limit  for the sum in (6). Com-
putations continue until  And, 
using the value of  the loop ends and 

 is reported as the ML esti-
mate of the renewal function based on sample  It 
is noted that in this step, the ML estimates of  and 

 which are based on a generated sample of size 
 from the SPP, are used in (4) to find  for 

 and that  is a symbolic notation in 
the CDF  The computation of (4) does not de-
pend on a value of 

3. The mean and ASE of estimates 
 of the renewal function 

based on  simulated samples are respectively com-
puted as 

4. The MCMC algorithm in this step is based on the 
Metropolis algorithm (see Casella and Berger 2004). 
The idea is to use a proposal distribution that is 
close enough to a conditional posterior distribution 
such as (12), which is not a recognizable distribution, 
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To get the MCMC-based estimate of the renewal func-
tion, for each generated sample  from 
SPP  the following steps are taken: 

(a) Generate an initial value  from gamma  and 
set the first entry of the array  The method for 
choosing the shape parameter  and the scale paremeter 

 is outlined in the step 3. 
(b) Generate a random observation  from the gener-

alized gamma  set  and let the 
first entry of the array  be 

 where  is the number of iterations based on 
the MCMC method. 

(c) For  repeat the following steps: 
(i) Generate  from uniform(0,1). 
(ii) Generate  from gamma
(iii) Let 
(iv) If  otherwise  set 

(v) Generate  from the generalized gamma 
 set  and 

(vi) Let  and go to (i). 
The first initial  = 5,000 estimates of  and  are dis-

carded as burned-in values, and Bayes estimates of the pa-
rameters based on sample  are found as 

The following tables provide a summary of the simulations. 
To compare the accuracy of the ML method versus the 
Bayesian method, the same sample  is 
used to compute both  and  The line over 
a parameter estimate such as  denotes the average of 
estimated values in simulations. 

Tables 1 and 3 reveal that as sample size  increases, 
the ASE of the ML and Bayes estimates for  and 
decrease. Also, we can see that for a small sample size 

 the Bayes estimator of  outperforms the 
ML, as the ASE of the Bayes estimator is much smaller. Fur-
thermore, for large values of  the accuracies of the ML 
and Bayes estimators are comparable. 

For the same generated samples used in Tables 1 and 3, 
we test the goodness of fit of the generated samples us-
ing Mathematica. Four distributions are considered: SPP, 
gamma, exponential, and inverse Gaussian. Given selected 

values of parameters  100 samples of size  are gen-
erated from the SPP, and the averages of the 100 p-values 
under the null hypotheses that the samples are from those 
distributions are listed in Tables 2 and 4. Tables 2 and 4 re-
veal that, in fact, the SPP is an appropriate distribution for 
the generated samples, as the p-values under the SPP dis-
tribution are large. 

Table 5 shows a summary of the simulation studies when 
ML estimates are used to choose hyperparameter values 
(see step 3 in Section 5). The conclusion is the same as for 
Tables 1 and 3. That is, the Bayes estimator is more ac-
curate than the ML estimator when the sample size  is 
small. For larger samples, they have a similar precision. 

To confirm convergence of MCMC-based estimators for 
 and  Figures 1 through 4, which are based on a gen-

erated sample of size  from the SPP  re-
spectively provide an MCMC trace plot for the Bayes es-
timate of  ("true"value 3.0), a histogram for estimated 
values of  an MCMC trace plot for the Bayes estimate of 

 ("true"value 4.5), and a histogram for estimated values of 
 in  iterations. 

6. NUMERICAL EXAMPLES 

EM-DAT provides worldwide data on dates and impacts of 
natural events from 1900 to the present. As an illustration 
of computations, we consider flood and tornado insurance 
damage in the United States from the year 2000 to the year 
2020. The detailed flood and tornado data sets and exam-
ples of interarrival calculations are given in the appendix. 
Interarrivals between two insured damages are defined as 
the difference between the end date of an occurrence and 
the start date of the subsequent occurrence. To confirm 
that, in fact, both data sets fit SPP  we use the good-
ness-of-fit test from Gulati and Shapiro (2008), given be-
low. A review of goodness-of-fit tests for the SPP distribu-
tion can be found in Chu, Dickin, and Nadarajah (2019). The 
data sets are sorted for computational convenience to find 
the ML estimate of  Using notation from Chu, Dickin, and 
Nadarajah (2019), let 

where 

Under the null hypothesis  the sample is from 
SPP  the test statistic is  and  is rejected 
if  where  is a significance level. The following 

and implement the Metropolis algorithm through a 
very large number of iterations (we used 
20,000) so that the Bayes estimates converge. 

5. Given  and  the code uses (4) and the same 
process as in step 2 above (except this time Bayes es-
timates of the parameters  and  are used in com-
putations) to compute an approximate Bayes esti-
mate  of the renewal function. The mean of 

 Bayes estimates for the renewal function and ASE 
are computed 
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Table 1. Accuracy of ML and Bayes estimators for        ,  ,  and  

20 4.54 .004 3.81 1.27 17.59 35.05 

50 4.52 .001 2.93 .112 13.76 5.41 

100 4.51 .0006 2.95 .057 14.06 .281 

1000 4.50 4.54x 3.01 .011 14.12 .369 

5000 4.50 1.08x 3.01 .001 14.12 .344 

10000 4.50 4.37x 2.99 .0006 14.12 .344 

20 4.50 3.38x 3.00 .00008 14.12 .344 

50 4.50 3.46x 2.99 .00006 14.12 .344 

100 4.50 2.24x 2.98 .00003 14.12 .344 

1000 4.50 1.95x 2.99 .00002 14.12 .344 

5000 4.50 1.74x 2.98 .00001 14.12 .344 

10000 4.50 1.650x 2.99 .00001 14.12 .344 

Table 2. P-values for goodness of fit for SPP, gamma, exponential, and IG            

SPP Gamma Exponential IG 

20 0.4598 0.3199 0.0004 0.3637 

50 0.4763 0.0386 3.58 0.0587 

100 0.4926 0.0040 7.54 0.0086 

1000 0.4988 3.33 5.07 4.11

5000 0.4692 7.28 5.04 5.06

10000 0.4819 2.16 9.92 1.50

( , and ) 

Table 3. Accuracy of ML and Bayes estimators for        ,  ,  and  

20 2.25 .005 2.13 .165 23.55 35.70 

50 2.22 .001 2.12 .087 25.47 5.55 

100 2.20 .0002 1.99 .056 25.23 2.80 

1000 2.20 8.46x 1.99 .004 24.95 .00009 

5000 2.20 4.47x 1.99 .001 24.96 4.84x

10000 2.20 1.98x 2.00 .0005 24.96 2.14x

20 2.20 6.04x 1.99 .00005 24.96 6.51x

50 2.20 1.25x 2.00 .00004 24.96 1.34x

100 2.20 1.02 1.99 .00003 24.96 1.11x

1000 2.20 1.56x 2.00 .00002 24.96 1.65x

5000 2.20 1.24x 2.00 .00001 24.96 1.34x

10000 2.20 1.23x 2.00 .00001 24.96 1.32x

( , , , ) 
( , , , , , ) 

Mathematica code is used to find the p-value associated 
with a calculated value of 

x: is the list for the sample observations 

H is the sample size 

Array[Y, H]; 
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Table 4. P-values for GOF for SPP, Gamma, Exponential, IG         

SPP Gamma Exponential IG 

20 0.4633 0.2910 0.0042 0.3340 

50 0.5023 0.0393 0.0004 0.0697 

100 0.5393 0.0021 1.58 0.0060 

1000 0.5144 3.11 1.64 4.11

5000 0.5012 1.10 3.09 6.86

10000 0.5333 3.02 6.21 2.34

( , and ) 

Table 5. Accuracy of Bayes estimators for      ,  ,  and    when MLEs are used to choose hyper-parameters        

20 2.26 .009 2.12 .095 23.82 18.34 

50 2.22 .0009 2.23 .155 26.65 13.81 

100 2.21 .0002 2.11 .047 24.83 .029 

1000 2.20 2.01x 1.99 .002 24.95 .0002 

20 2.20 .008 2.26 .074 24.27 .85 

50 2.20 .0009 2.19 .048 24.74 .10 

100 2.21 .0002 2.20 .041 24.83 .029 

1000 2.20 1.99x 2.21 .001 24.95 .0002 

( , , , ) 
( , , , , , ) 

Figure 1. MCMC Chain PLot for Bayes Estimate of        

Array[U, H]; 

Array[YS, H]; 

Y[1] = H*x[[1]]; 

YS[1] = Y[1]; 

j = 2; 

While[j < H + 1, 

Y[j]= (H - j + 1) (x[[j]] - x[[j - 1]]); 

YS[j] = Sum[Y[i], {i, 1, j}]; 

Figure 2. Histogram of   (Bayes)  

j++; 

]; 

i = 1; 

While[i < H + 1, 

U[i] = YS[i]/YS[H]; 

i++; 

]; 

Ubar = Sum[U[i]/(H - 1), {i, 1, H - 1}]; 
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Figure 3. MCMC Chain Plot for Bayes Estimate of m         

Figure 4. Histogram of m(Bayes)    

Λ₁ = Sqrt[12/(H - 1)] (Ubar - .5); 

Λ₂ = Sqrt[5/(4 (H + 2) (H - 1) (H - 2))] 
  (H - 2 + 6 HUbar - 12 Sum[(i U[i])/(H - 1), 
  {i, 1, H - 1}]); 

Λ₀ = Λ₁² + Λ₂² 

P-value = 1 - CDF[ChiSquareDistribution[2], Λ₀] 

FLOOD DATA 

The following denote  values: 1.1, 1.2, 
1.266, 2.066, 2.233, 2.433, 3.633, 5.6, 5.766, 6.5, 6.833, 7.5, 
7.6, 8.666, 9.4, 10.733, 13.5, 18.9, 22.433, 23.628, 25.1, 
30.996. 

For the flood data, we get  with p-value = 
.999. Therefore, there is no significant evidence against 
the SPP distribution. We have 

 As mentioned ear-
lier, we can use ML estimates to choose hyperparameters 

 and  We let 
and  and  is calculated as  Using the 
above information, the Mathematica code based on 
provides 

Table 6 lists the p-values for goodness of fit of the flood 
data under four null hypotheses that data are from the four 
distributions (SPP, gamma, exponential, and inverse Gauss-

Table 6. P-values for GOF of Flood Data       

SPP Gamma Exponential IG 

0.99 .255 .612 .095 

Table 7. P-values for GOF of Tornado Data       

SPP Gamma Exponential IG 

0.998 0.0062 0.0005 .00003 

ian). We can see that there is no strong evidence against 
SPP and exponential; however, the p-value for SPP is the 
largest among the four p-values. 

TORNADO DATA 

The following denote  values: 
0.033, .1, 0.133, 0.166, 0.266, 0.3, 0.333, 0.366, 0.4, 0.4, 

0.466, 0.566, 0.633, 0.766, 0.833, 0.9, 0.966, 1, 1.0333, 
1.133, 1.2333, 1.266, 1.3, 1.466, 1.866, 2.066, 3.533, 4.233, 
4.266, 5.133, 5.266, 5.333, 6.066, 7.366, 7.7, 8.066, 8.466, 
8.466, 8.533, 8.9, 8.9, 9.533, 9.8, 10.8, 10.933, 13.066, 14.1, 
16.23, 16.566, 24.133 

For the tornado data, we get  with p-value = 
.9989. Therefore, there is no significant evidence against 
the SPP distribution. We have , and 

. As mentioned earlier, we can use ML es-
timates to choose the hyperparameters  and . We let 

 and , and 
is calculated as . Using the above information, the 
Mathematica code based on  provides 

Table 7 lists the p-values for goodness of fit of the tornado 
data under four null hypotheses that data are from the four 
distributions (SPP, gamma, exponential, and inverse Gauss-
ian). We can see that there is no strong evidence against the 
SPP distribution, as the p-values for the other three distri-
butions are very small. 

It is noted that  estimates for the tornado data are 
larger than for the flood data. This is because the average 
interarrival for the flood data is 9.36 and for the tornado 
data, 4.90. Therefore, for a specified , the number of floods 
by time  would be smaller than the number of tornados. 

We also note that for both of the above data sets, the 
ML and Bayes estimates for  are less than 1. For compu-
tation of estimates of , as outlined in Section 2 using 
Ramsay (2006), we need  to be a positive integer. There-
fore, in the Mathematica code both estimates are rounded 
up to 1 to obtain estimates for the renewal function. It is 
also noted that the expected value and the variance of the 
SPP random variable are defined, respectively, if  and 

. Hence, even though the first and the second mo-
ments are not defined when  the delta moment 
for SPP(  is defined as 
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Table 8. P-values for GOF of a generated sample from         
SPP  

SPP Gamma Exponential IG 

0.952 0.0003 3.87x .006 

Table 9. Hurricane data for New Orleans 9/29/2021-1/18/2022       

7 9/29/21 2 

3 9/30/21 1 

1 10/2/21 2 

3 10/3/21 1 

1 10/12/21 9 

1 10/24/21 12 

1 10/29/21 5 

3 11/15/21 16 

2 1/10/22 60 

1 1/17/22 7 

1 1/18/22 1 

A GENERATED SAMPLE FROM SPP 

The following data are generated from the SPP distribution 
using the built-in program in Mathematica, and the follow-
ing denote  values: 

4.53749, 4.62575, 4.63825, 4.72415, 4.84672, 4.8955, 
5.15921, 5.23818, 5.248, 5.39497, 5.54926, 5.62348, 
5.69356, 5.72578, 5.87845, 6.42667, 6.51168, 8.86315, 
9.56578, 16.6426. 

For the above sample, we get  with p-value = 
.952. Therefore, as expected, the interarrivals have an SPP 
distribution. The p-values for goodness of fit of gamma, 
exponential, and inverse Gaussian, respectively, are .0003, 
3.8x , and .006. 

 and 
. Based on ML estimates, we choose ap-

propriate values for the hyperparameters, as follows: 

Based on the above information, the Mathematica code 
computes the ML- and MCMC-based estimates for the re-
newal function at times  and  as 

Table 9 shows data extracted from FEMA.gov 
(https://www.fema.gov/openfema-data-page/fima-nfip-
redacted-claims-v1) for hurricanes hitting New Orleans 
from September 29, 2021, through January 18, 2022. Table 
10 shows the p-values for goodness of fit of the SPP, 
gamma, exponential, and inverse Gaussian distributions for 
the third column, interarrivals (days). 

Table 10. P-values for goodness of fit of hurricane data         
for New Orleans    

SPP Gamma Exponential IG 

0.972 .671 .292 .818 

Table 10 reveals that whereas all four distributions can 
be used for the data, the p-value for the SPP distribution is 
the largest. 

7. SUMMARY 

SPP distribution is considered as an inter-arrival distrib-
ution of a renewal process. Computational formulas from 
Ramsay (2006), for the sum of iid random variables from the 
SPP distribution, are used to provide ML- and MCMC-based 
Bayes estimates for the renewal function. The Bayes esti-
mates of parameters  are based on shifted exponen-
tial and gamma priors. Two conditional posterior distribu-
tions  and  are derived. Since 
is not a recognized PDF, an MCMC method based on the 
Metropolis algorithm is employed. The parameter esti-
mates are then used to compute the ML estimate and an 
approximate Bayes estimate for the renewal function. Sim-
ulation studies confirm that if selected values for hyperpa-
rameters of the prior distributions of  and  are consis-
tent with selected "true"values of  and  in simulations, 
then the Bayes estimator for the renewal function would 
have a much smaller ASE and it outperforms the MLE with 
regard to accuracy for small samples. Also, for large sam-
ples, simulations confirm that the accuracies of the ML 
and Bayes estimators are comparable. In practice, only one 
sample is available from the SPP distribution, and choosing 
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hyperparameters that are consistent with the ML estimates 
of  and  as outlined in Section 5, would provide more 
stable Bayes estimates for the renewal function, as demon-
strated in Table 5. For illustration purposes of the compu-
tations, three data sets are considered: two data sets from 

EM-DAT and one data set from FEMA.gov for hurricanes 
hitting New Orleans. 
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Table 11. Date and Insured Damage Losses of Natural Event Flood in USA from 2000 to 2021                

Start Year StartMonth StartDay EndYear EndMonth EndDay InsuredDamages ('000US$) 

2002 6 30 2002 7 23 200500 

2004 7 12 2004 7 14 370000 

2005 2 17 2005 2 23 200000 

2005 1 7 2005 1 11 200000 

2005 10 8 2005 10 16 200000 

2006 6 25 2006 7 1 401000 

2006 5 11 2006 5 22 62500 

2007 8 16 2007 8 27 450000 

2008 6 9 2008 6 30 400000 

2009 9 20 2009 9 21 200000 

2011 4 18 2011 5 23 500000 

2011 8 6 2011 8 9 86000 

2013 9 12 2013 9 19 200000 

2014 12 2 2014 12 5 50000 

2014 8 11 2014 8 13 540000 

2015 12 15 2016 1 6 200000 

2015 5 23 2015 5 30 1500000 

2016 4 16 2016 4 19 1000000 

2016 5 27 2016 6 2 200000 

2016 8 9 2016 8 16 2500000 

2016 3 8 2016 3 13 333000 

2017 4 28 2017 5 1 800000 

2019 3 14 2019 3 31 2500000 

APPENDIX 

The following method is used to compute interarrival 
times. Let  the interarrival time between the st 
and th renewal, be defined as the difference between the 
end date of an occurrence and the start date of the subse-
quent occurrence.  Without loss of generally, 
we assume that there are 30 days in a month and 360 days 
in a year. Therefore, interarrival times are found as a frac-
tion of a year. 

For example, in Table 3 above, the first flood began at 6/30/
2002 and ended at 7/23/2002, and the second flood began at 
7/12/2004 and ended at 7/14/2004. Therefore, 

 months, which is the last number in 
the flood data. 

which is also converted to 23.628 months. 
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Table 12. Date and Insured Damage Losses of Natural Event Tornado in USA from 2000 to 2021                

Start Year StartMonth StartDay EndYear EndMonth EndDay InsuredDamages ('000US$) 

2000 1 2 2000 1 4 200500 

2000 9 20 2000 9 20 62500 

2001 2 24 2001 2 24 200500 

2002 4 27 2002 5 3 2000500 

2002 11 5 2002 11 10 450500 

2003 3 18 2003 3 20 450000 

2003 5 4 2003 5 10 3200000 

2004 3 4 2004 3 7 200000 

2006 3 11 2006 3 13 800000 

2006 11 15 2006 11 16 62500 

2006 12 25 2006 12 25 56000 

2007 2 2 2007 2 2 200000 

2007 3 1 2007 3 2 450000 

2007 5 4 2007 5 8 200000 

2007 2 2 2007 2 2 200000 

2008 5 22 2008 5 26 1325000 

2008 5 10 2008 5 12 450000 

2008 2 5 2008 2 6 955000 

2008 3 14 2008 3 14 450000 

2008 4 9 2008 4 11 800000 

2008 4 28 2008 4 28 62500 

2009 4 9 2009 4 10 1150000 

2009 6 10 2009 6 18 1100000 

2009 2 10 2009 2 13 1350000 

2009 5 7 2009 5 9 600000 

2010 5 12 2010 5 16 2000000 

2011 5 29 2011 6 1 450000 

2011 4 22 2011 4 29 8000000 

2011 4 14 2011 4 16 1500000 

2011 5 20 2011 5 25 6900000 

2012 3 2 2012 3 4 2500000 

2012 2 28 2012 2 29 450000 

2012 4 2 2012 4 3 800000 

2012 4 14 2012 4 15 910000 

2013 5 18 2013 5 22 1800000 

2013 5 15 2013 5 17 200000 

2013 11 16 2013 11 18 800000 

2013 1 29 2013 1 30 200000 

2013 5 26 2013 6 6 1425000 

2015 4 24 2015 4 28 800000 

2015 5 3 2015 5 5 200000 

2015 4 7 2015 4 10 990000 

2015 3 25 2015 3 26 450000 

2015 12 26 2015 12 30 800000 

2016 5 8 2016 5 11 800000 

2017 8 5 2017 8 8 200000 

2017 3 25 2017 3 28 2000000 
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2017 2 27 2017 3 2 1400000 

2018 7 19 2018 7 22 400000 

2019 3 3 2019 3 4 140000 

2020 4 6 2020 4 9 2200000 

2020 4 10 2020 4 14 2600000 
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